Material published in Research in Science Education 1971-1994 that does not always appear on Springer Link

All this appears in temporal sequence commencing on the next page, and beginning with 1971.

A summary of what follows (with those materials relating to research and conference presentations missing from Springer Link underlined):

Vol 1, 1971 – front matter, contents, contributors (institution and 1 para bio)
Vol 2, 1972 – front matter, preface, contents, a paper not reproduced at Springer Link (with a beginning editor’s comment that will be an explanation for this omission), contributors (institution and 1 para bio)
Vol 3, 1973 - front matter, contents, preface, contributors (institution and 1 para bio)
Vol 4, 1974 - front matter, contents, preface, contributors (intuition address)
Vol 5, 1975 - front matter, contents, preface, contributors (institution)
Vol 6, 1976 - front matter, contents, preface, contributors (institution and position)
Vol 7, 1977 - front matter (including for the first time the members of the Editorial Board), contents, preface, a paper not reproduced at Springer Link (in this case there is no obvious explanation for this omission, and it appears to be an oversight), contributors (institution and position)
Vol 8, 1978 - front matter, contents, preface, contributors (institution), conference organizers
Vol 9, 1979 - front matter, contents, preface, contributors (institution), conference committee
Vol 10, 1980 - front matter, contents, preface, contributors (institution)
Vol 11, 1981 - front matter, contents, preface, contributors (institution)
Vol 12, 1982 - front matter, contents, preface, contributors (institution)
Vol 13, 1983 - front matter, contents, preface, contributors (institution), guidelines for authors of papers for RISE
Vol 14, 1984 - front matter, contents, preface, author addresses, Research Notes (1 paragraph on each of 8 presentations at the conference that were not later formal RISE papers), guidelines for authors
Vol 15, 1985 - front matter, tribute, front matter, tribute (a short tribute to Roger Osborne), contents, preface, Research Notes (1 paragraph on each of 6 conference presentations), author addresses, guidelines for authors
Vol 16, 1986 - front matter, contents, preface, author addresses, guidelines for authors of papers for RISE, Research Notes (1 paragraph on each of 8 presentations at the conference)
Vol 17, 1987 - front matter, contents, preface, a paper reproduced as “editorial comment” at Springer Link (in this case there is no obvious explanation for this description), guidelines for authors, author addresses
Vol 18, 1988 - front matter, contents, editorial comment, first-named author addresses
Vol 19, 1989 - front matter, contents, editorial comment, guidelines for authors, author addresses
Vol 20, 1990 - front matter, contents (all reviewers of papers now listed), editorial comment (author[s] institution now given with the paper), guidelines for authors, 1 Research Note, Appendix – categorized index RISE Vols 1-20
Vol 21, 1991 - front matter, contents, note from the general editor, editorial comment, review panel, guidelines for authors, Abstracts and Research Notes (4 outlines, variously one paragraph to three pages)
Vol 22, 1992 - front matter, contents, editorial comment, review panel, guidelines for authors, Abstracts and Research Notes (9 outlines, variously one paragraph to three pages)
Vol 23, 1993 - front matter, contents, editorial comment, review panel, guidelines for authors, Abstracts and Research Notes (6 outlines, variously one paragraph to three pages)
Vol 24, 1994 - front matter, contents, editorial comment, review panel, guidelines for authors, Abstracts and Research Notes (10 outlines, variously one paragraph to three pages), Supplement (the text of the after-dinner address given at the conference dinner), back matter
research 1971
RESEARCH 1971
Edited by R.P. Tisher

A publication containing papers
presented at the Associations’
Annual Conference held in Sydney
in May, 1971

Executive Secretary: Professor P. Fensham
Administrative Assistant: R.J. White
 Faculty of Education,
 Monash University,
 Clayton, Victoria 3168

Publication printed by:
Australian Science Education
Project,
Toorak, Victoria. 3142

Enquiries relating to “Research 1971” should be directed to:
The Editor, Faculty of Education, University of Queensland, Brisbane. 4067
CONTENTS

Countenance of Science Education Research

Cognitive Style

| Some Dimensions of a Science Cognitive Style and Their Relevance for the Classroom | T.W. Field | 19 |

Sequencing and Inquiry/Discovery Studies

External Factors in the Learning of Graphical Skills in Kinematics	R.T. White	28
The Relationships Among Some Components of Student-Centred Inquiry Methods and Students’ Perceptions of the Outcomes of Biology Teaching	Effie D. Best	47
An Experimental Study Comparing a Guided Discovery Method with Two Other Methods of Teaching a Primary School Science Unit	Rosita Young	59

Micro-teaching and Interaction Studies

| Self Instruction Using Microteaching and Videotape Feedback During an In-Service Education Course for Teachers of Harvard Project Physics | J. Rentoul | 79 |
| The Effects of Pupil Involvement in Classroom Interaction of Science Achievement | C.N. Power | 91 |

Curriculum Evaluation

Formative Evaluation and the Australian Science Education Project	Gregor A. Ramsey	99
Changes in Physics Students in Three States Over a Two Year Period	Lindsay D. Mackay	109
Problems in the Summative Evaluation of Experimental Science Curricula in Developing Countries	G.R. Meyer	119
Can Scientific Attitudes be Evaluated?	David Cohen	135

The Contributors | 144 |
THE CONTRIBUTORS

EFFIE D. BEST B.Sc. (Hons) (Adel.), Ph.D. (Ohio State), has taught junior secondary school science and senior biology in the UK and in South Australia, and worked for a year as information analyst for the ERIC centre for Science and Mathematics Education in the USA. She is one of the editors of Biological Science: The Web of Life (Australian BSCS version) and is presently senior lecturer in biology, Adelaide Teachers College.

DAVID COHEN is Senior Lecturer in Education at Macquarie University. From 1951-62 he taught for the Education Department of Victoria. In 1964, he completed his Ph.D. at Michigan State University in the field of curriculum development. He has lectured in science education at the Technical Teachers College, and was Research Officer for the Education Department of Victoria (1966-68). His main interests are in curriculum development and evaluation, science education and educational media. He is the author of a number of books and published papers, a member of the Editorial Board of the National Science Curriculum Materials Project, and was editor of the Australian Science Teachers Journal.

T.W. FIELD Ph.D., B.A. (U.N.E.), B.Sc., Dip.Ed. (Syd.), has been a lecturer in Science at Armidale Teachers College since 1963. He recently completed a Ph.D. programme in science education at the University of New England. His major teaching interests are in the physical sciences, curriculum studies and the psychological aspects of science education. The latter area has been the focus of his research activities. He is a member of the Commonwealth Science Facilities Standards Committee and the editor of a current junior science book project.

L.D. MACKAY is Senior Lecturer in Education at Monash University. He has written extensively on the attainment of students following traditional and innovative science curricula. He is currently completing a Ph.D. study at Monash.

G.R. MEYER holds degrees in Arts, Science and Education from the University of Sydney and his Doctorate is from the University of London, Institute of Education. He is a Fellow of the Australian College of Education. For many years Dr Meyer taught Zoology and then Biology at Sydney University and between 1960 and 1966 was the Chief Examiner in Intermediate and Leaving Certificate Biology in New South Wales. Since 1967, he has been the Director of the Centre for Advancement of Teaching at Macquarie University. Recent research interests include the evaluation of various educational media in the teaching of Science and the development of techniques for the formative and summative evaluation of new Science curricula. He is also chairman of the board of consultants of the National Science Curriculum Materials Project (NSCM) which is producing multi-media learning materials at matriculation levels for all Australian states.
C.N. POWER. Lecturer in Education at the University of Queensland, has currently completed a Ph.D. study on the effects of communication patterns and feedback in science lessons. Dr Power has served as a science teacher in various state high schools in Queensland, as a Research Officer for the Research and Curriculum Branch, State Education Department, Queensland, and as a Lecturer in Education, University of Queensland. At the University, he has continued his interest in micro-teaching, test construction, implementation of curricula, science education and evaluation, and has developed a modified Bellack Scheme for the observation and analysis of classroom behaviours. He is currently preparing various manuscripts for Australian and overseas books.

GREGOR RAMSEY was Assistant Director (Service) in the Australian Science Education Project. His experience covers curriculum development in chemistry in South Australia and a period as Research Associate at The Ohio State University where he worked with the Educational Resources Information Centre for Science Education. Dr Ramsey is former editor of the South Australian Science Teachers Journal and has been active on curriculum committees and in science teaching activities for many years. He is now Principal of Western Teachers College.

JOHN RENTOUL graduated B.Sc., Dip.Ed. University of Melbourne, 1956. Since then he has held a number of teaching posts, for example, eleven years Senior Science and Mathematics in Victorian State Secondary Schools, on year (1960) Physics and Mathematics at Cranleigh College, Surrey, England, and three years Physics and Mathematics, Knox Grammar School, New South Wales. In 1965, he graduated B.Ed. from University of Melbourne, and at present is completing an M.A. Hons. Thesis in Education at Macquarie University, New South Wales.

R.P. TISHER, Reader in Education at the University of Queensland, was, for some time, a science teacher in secondary schools in New South Wales, and a lecturer in Teachers Colleges. He joined the staff of the University of Queensland in 1963. Dr Tisher's research activities have been associated with science education, the effects of teaching strategies and teacher education. At present he is co-ordinator for the Diploma in Education programme at Queensland and is interested in developing micro-teaching techniques for research projects. During 1969-70, he was a Senior Scholar under the Australian-American Foundation Scheme and a Visiting Professor at the Science Education Centre, University of Iowa.

R.T. WHITE was a teacher in Victorian high schools for ten years, and also taught for a year in New Zealand and for another year at the Melbourne Secondary Teachers College. A year as Senior Master and Acting Headmaster of a high school encouraged him to become Physics Executive Officer of the Victorian Universities and Schools Examinations Board in 1967. After two years in that post he began full-time study in the Faculty of Education, Monash University. He became a member of staff in March 1971. He is now a senior lecturer, specializing in applied statistics and experimental design.
ROSITA YOUNG graduated B.Sc. (N.Z.) from the University of Canterbury with majors in Zoology and Botany. After experience in teaching secondary science in New South Wales, she was appointed to the staff of the School of Education, Macquarie University, where she is currently a Senior Tutor and is completing requirements for the degree of M.Sc. (Hons.).
RESEARCH
1972

Australian Science Education Research Association
Enquiries relating to "Research 1972" should be directed to:

The Editor, Research 1972,
Faculty of Education,
University of Queensland,
BRISBANE, Qld. 4067.

Publication printed by: University of Queensland Printery.
THE AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

RESEARCH 1972

Edited by

R. P. Tisher

A publication containing papers presented at the Association's Third Annual Conference held in Melbourne, in May, 1972.

Executive Officers: Dr. C. N. Power
 Dr. R. P. Tisher

Address: Faculty of Education, University of Queensland, BRISBANE, Qld. 4067.
PREFACE

The first publication of the Australian Science Education Research Association, *Research 1971*, was a modest one for a group with limited funds and clientele. However, the encouragement, co-operation and assistance of many persons and organisations guaranteed the success of the publication. Consequently, the association, with greater confidence, is producing its second modest, yet significant, monograph which contains the papers read and tabled at the third annual conference in Melbourne, May 1972.

The conference was held at the headquarters of the Australian Science Education Project. The venue was significant and appropriate on several counts: first, A.S.E.P. had assisted greatly in the production of *Research 1971*, and second, a major theme of the conference was "research that can be based on A.S.E.P. materials". The first four papers which appear are associated with the major theme. The remaining six deal with a variety of topics but appeared to belong to certain clusters depending on themes which appeared in them. The responsibility for the grouping rests entirely with the editor, but the categorization does highlight some of the areas in which research is proceeding in Australia. It is appropriate to point out that the views, opinions, interpretations and implications expressed are those of the individual authors and, not necessarily those of the Australian Science Education Research Association or the Editor. Furthermore, rigorous cutting and editing of manuscripts have not occurred because the Editor believed the publication should present an accurate record of the proceedings of the annual conference. The reports evidence a wide range of interests and styles in research. This is an encouraging feature and an acknowledgement that a range and variety of studies are essential, and appropriate, if research in science education is to have an impact in the real world.

Research 1972 is further encouraging evidence of a continued interest and activity in research in science education in Australia. Hopefully, other research workers will now build onto rather than repeat, studies which have been reported here. Certainly, more systematic, well-conceived and well-executed research is required. There is a challenge to increase the volume of research while maintaining its quality and relatedness to the real world. Moreover, there is the exciting prospect that much valid research evidence will accrue to influence educational theory and practice.

R. P. Tisher
University of Queensland
CONTENTS

Research associated with A.S.E.P.

A Model for Curriculum Evaluation
N. L. Baumgart 1

The Australian Science Education Project as a stimulus for Research—a Progress Report of a Study of Teaching Strategies used with A.S.E.P. Materials
C. N. Power 13

Some Suggestions for Research related to A.S.E.P.
K. W. Moritz 21

A Checklist for Analysing the "Style" of Instructional Materials—a report based on work by S. R. Shepherd. 28

Review of Some Research in Science Education

Classroom Interaction: The New Religion
R. P. Tisher 35

Antecedent Variables and Learning in Science

Prior Knowledge—A Source of Negative Factors for Subsequent Learning
P. J. Fensham 50

Difficulties with Non-technical vocabulary amongst Junior Secondary School Students: The Words in Science Project
P. L. Gardner 58

The Development of a Creativity Test
D. Cohen 82

Graphical Skills and Learning Hierarchies in Science

Outline of a Learning Hierarchy Investigation
R. T. White 97

Basic Skills of Graphical Interpretation
R. D. Linke 100

Evaluation Instruments for the Researcher

A survey of Evaluation Instruments
N. L. Baumgart and D. Cohen 118

The Contributors

R. P. Tisher

R. D. Linke
A CHECKLIST FOR ANALYSING THE 'STYLE' OF INSTRUCTIONAL MATERIALS

Editor's Comment:

This report is based on work undertaken by S.R. Shepherd of the staff of the Australian Science Education Project. Mr. Shepherd described his exploratory study during the A.S.E.R.A. Conference and the comments which follow are adaptations of his presentation and the paper he tabled. It is appropriate to point out that the project is an embryonic but, nevertheless, significant one. The study is reported here in the hope that other workers will co-operate with and build upon the work begun by Shepherd.

* * * * * * * * *

Introduction

The materials that are being produced as part of the activities of ASEP will be classified in terms of

1. topics, i.e. the information presented,
2. techniques, i.e. procedures for which instructions are given,
3. degrees of prescription, i.e. whether pupils' tasks are "open-ended" or structured,
4. group size, i.e. number of persons in a group for each pupil activity,
5. ancillary materials required, i.e. additional equipment, chemicals, references and audio-visual media that are required;

and

6. style of written material.

In an attempt to describe the "styles" or "approaches" used in the written ASEP material, a checklist was devised. This list, which is reported here, will hopefully provide some details about ASEP units and will allow comparisons to be made with other instructional materials which have characteristics somewhat similar to those of ASEP. What, then, are the relevant characteristics which will provide guidelines for the establishment of a checklist for style?

Characteristics of ASEP Materials

The main characteristics of the ASEP materials for pupils are that:
they are ‘self explanatory’, that is, all the information and instructions that pupils need are contained in the pupils’ books. The ASEP materials do not necessarily rely on teachers or other reference sources to provide information and instructions.

2. printed words carry the main ‘messages’. There are illustrations and other materials but these support, rather than replace, the printed words.

3. short sentences are used to increase the “reading ease” of the materials (Flesch, 1968). Most of the sentences contain 10 to 15 words and are “simple”, i.e., they contain a single statement.

The Checklist

The sentences in the ASEP materials were taken as the basic unit of analysis and were classified into three broad groups designated:

- statements,
- questions, and
- instructions and suggestions.

Statements were further subdivided into those providing information and those dealing with explanation. In a similar manner the category, “instructions and suggestions” was subdivided so that distinctions could be made as to whether these instructions were concerned with equipment, handling things, observation, writing, discussion and reading. The questions category was not subdivided, but, perhaps in subsequent classifications it may be appropriate to distinguish between recall and other types of questions. The various categories and the subdivisions are shown in the checklist in the Appendix to this paper.

Advantages of the checklist are that (a) it can be mastered quickly, (b) it can be scored readily and (c) it is quite reliable. Certainly some results indicate that different coders obtain a high measure of agreement when classifying similar materials. An example of such a reliability check appears in the table below. The data were obtained by 2 teachers, 2 clerical assistants and the ASEP staff writer when they classified the sentences in the ASEP unit, “Electric Circuits”.

The results indicate that the scorers were fairly consistent in their classification for most types of sentences. Greatest discrepancies occurred for the categories designated ‘explanation’, ‘discuss’ and ‘read’. It is proposed to produce a guide sheet for scorers so that greater consistency can be obtained on these few categories in the future.
<table>
<thead>
<tr>
<th>Type of Sentence</th>
<th>Number of sentences classified by SCORER</th>
<th>Mean</th>
<th>Standard deviation as a % of mean score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JR</td>
<td>PC</td>
<td>ES</td>
</tr>
<tr>
<td>Information</td>
<td>297</td>
<td>348</td>
<td>308</td>
</tr>
<tr>
<td>Explanation</td>
<td>122</td>
<td>61</td>
<td>111</td>
</tr>
<tr>
<td>TOTAL STATEMENTS</td>
<td>419</td>
<td>409</td>
<td>419</td>
</tr>
<tr>
<td>TOTAL QUESTIONS</td>
<td>101</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Equipment</td>
<td>19</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Handle things</td>
<td>208</td>
<td>241</td>
<td>205</td>
</tr>
<tr>
<td>Observe</td>
<td>48</td>
<td>38</td>
<td>49</td>
</tr>
<tr>
<td>Write</td>
<td>81</td>
<td>80</td>
<td>86</td>
</tr>
<tr>
<td>Discuss</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Read</td>
<td>10</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>TOTAL INSTRUCTIONS</td>
<td>378</td>
<td>392</td>
<td>397</td>
</tr>
<tr>
<td>Grand TOTAL</td>
<td>898</td>
<td>896</td>
<td>911</td>
</tr>
</tbody>
</table>

Application to Other Materials

As a further application of the checklist a number of additional ASEP units, e.g., Life in Freshwater, Light Forms Images, and Mice and Men, sections of the Junior Secondary Science Project (J.S.S.P.), e.g., Green 5, How Hot is it? and Red 7, How Mammals Function, Chapters 1 to 4 in Volume 1 of the Intermediate Science Curriculum Study (I.S.C.S.) and Chapters 9, 18, 27, 36 and 45 of Abridged Science for High School Students (S.F.H.S.S.) were classified. The results are presented in the diagrams which follow.

It seems appropriate to note the diagram indicates that for A.S.E.P. materials the proportion of sentences in the different categories is remarkably similar to the proportions in the categories for the I.S.C.S. chapters. In both materials, for example, 11-12 per cent of all sentences are questions. Both I.S.C.S. and A.S.E.P. materials differ from J.S.S.P. in the number of times pupils are asked to write statements. Sixteen per cent of the sentences in J.S.S.P., compared to 7 per cent for A.S.E.P. contains an instruction to write. Another interesting observation is that, for the sections sampled, the project materials (A.S.E.P., J.S.S.P., and I.S.C.S.) present far more instructions than do traditional texts such as Abridged science for high school students.

It is obvious that for A.S.E.P. materials the rationale is remarkably similar to the science handbooks of both materials, for example, the A.S.E.P. and A.S.E.P. materials differ in the type of write statements. Sixteen per cent of the plans for A.S.E.P. contain an equipment statement; for the sections sampled, JSSP contained far more instructions than SPHSS did for student.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation as a % of mean score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS</td>
<td>298</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>426</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>187</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>374</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>898</td>
<td>904</td>
</tr>
</tbody>
</table>
Concluding Comments

Certainly, there seems to be a great similarity among the three project materials. If the claim that A.S.E.P. materials have a rather special or distinctive approach is to be substantiated, then additional research is required. This research could involve a more detailed and sophisticated analysis of the written materials and studies of the effects of A.S.E.P. on pupils.

Hopefully, the checklist described here will be modified and/or extended by other workers in studies of curriculum materials. If this report stimulates further research, then it has achieved one of its objectives.

REFERENCES

APPENDIX

Australian Science Education Project

SENSE REASONING

UNIT: ____________________________

VERSION:
- *local trial*
- *national trial*
- *final version*
- *record book*

Analyst: ____________________________ Date started: ____________________________

Rules for sentence analysis:
1. Do not score the front cover or the copyright statement on the back cover.
2. Include captions.
3. Complex sentences can be scored twice e.g. handle + record.
4. Regard colons or semi-colons as ends of sentences.

<table>
<thead>
<tr>
<th>Type of sentence or wordgroup</th>
<th>Score</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFORMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPLANATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.g. how to use the book,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>what the unit is about,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>introduction e.g. what you</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>will be doing,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reminders e.g. 'We have seen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'You have already found out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEADINGS, contents lists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUESTIONS (other than headings)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONS AND SUGGESTIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment lists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>handle things — includes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>leave or store things</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>things you must not do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>go to . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collect, find, obtain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>observe, look at, notice,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>examine, measure, compare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>write, record, turn to your</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>record book, draw, list,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calculate, explain, describe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>discuss, think about, ask your</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teacher, 'Suppose ...'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>read, look up, check books,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>references listed.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: ____________________________

100%
THE CONTRIBUTORS

N. L. BAUMGART is a Lecturer in Education within the School of Education at Macquarie University. He was for some time a teacher and deputy principal in Queensland schools. After completing a science degree and a masters programme in education at the University of Queensland, he joined the staff of Macquarie. He is currently on leave while acting as a resident Educational Consultant in the Philippines.

D. COHEN is Senior Lecturer in Education at Macquarie University. From 1951-62 he taught for the Education Department of Victoria. In 1964 he completed his Ph.D. at Michigan State University in the field of curriculum development. He has lectured in science education at the Technical Teachers’ College, and was Research Officer for the Education Department of Victoria (1966-68). His main interests are in curriculum development and evaluation, science education and educational media. He is the author of a number of books and published papers, a member of the Editorial Board of the National Science Curriculum Materials Project, and was editor of the Australian Science Teachers Journal.

P. J. FENSHAM is currently Professor of Science Education at Monash University after an earlier career that included work in physical chemistry and the social sciences. Before coming to Monash he was Reader in Physical Chemistry at Melbourne University. At present he is engaged in innovating new patterns of science teacher education.

P. L. GARDNER a Senior Lecturer in Education, joined the staff of Monash University after some years teaching in Victorian High Schools. His particular interests are in curriculum issues. He has engaged in research in concept attainment and attitude objectives in science education. He has also developed a word test for New Guinea and some readiness tests for WEB OF LIFE biology.

R. D. LINKE Research Scholar in Education at Monash University is currently completing a Ph.D. in science education. He came to Victoria from South Australia where he completed a B.Sc. (Hons) in Developmental Biology at Flinders University. He has lectured, part-time, at Toorak Teachers, developed an experimental course in Environmental Science and is currently involved in a study for a prospective National Survey of Environmental Education in Australia – a project sponsored jointly by the Australian Conservation Foundation and Monash University.
K. W. MORITZ

has for the past three years been an area specialist in evaluation for A.S.E.P. He is a graduate, B.A., B.Sc., and B.Ed., from Melbourne University and was for some time a science master at Ringwood High, a science co-ordinator at Mitcham High and a science master at Caraghfield School, Edinburgh, Scotland. He has also spent some time in test development with A.C.E.R., and was an evaluation officer for the Junior Secondary Science Project.

C. N. POWER

Lecturer in Education at the University of Queensland, has completed a Ph.D. study on the effects of communication patterns and feedback in science lessons. Dr. Power has served as a science teacher in various state high schools in Queensland, as a Research Officer for the Research and Curriculum Branch, State Education Department, Queensland, and as a Lecturer in Education, University of Queensland. At the University, he has continued his interest in micro-teaching, test construction, implementation of curricula, science education and evaluation, and has developed a modified Bellack Scheme for the observation and analysis of classroom behaviours. He is currently preparing various manuscripts for Australian and overseas books.

S. R. SHEPHERD

B.Sc., B.Ed., T.P.T.C., is an Area Specialist in Biology at A.S.E.P. He was formerly a teacher in Victorian High Schools and Lecturer in Method of Science at the Faculty of Education, Melbourne University.

R. P. TISHER

Reader in Education at the University of Queensland, was, for some time, a science teacher in secondary schools in New South Wales, and a lecturer in Teachers Colleges. He joined the staff of the University of Queensland in 1963. Dr. Tisher's research activities have been associated with science education, the effects of teaching strategies and teacher education. At present he is co-ordinator for the Diploma in Education programme at Queensland and is interested in developing micro-teaching techniques for research projects. During 1969-70, he was a Senior Scholar under the Australian-American Foundation Scheme and a Visiting Professor at the Science Education Centre, University of Iowa.

R. T. WHITE

was a teacher in Victorian High Schools for ten years, and also taught for a year in New Zealand and for another year at the Melbourne Secondary Teachers College. A year as Senior Master and Acting Headmaster of a high school encouraged him to become Physics Executive Officer at the Victorian Universities and Schools Examinations Board in 1967. After two years in that post he began full-time study in the Faculty of Education, Monash University. He became a member of staff in March, 1971. He is now a Senior Lecturer, specializing in applied statistics and experimental design.
SCIENCE
EDUCATION:
RESEARCH
1973

Australian Science Education Research Association
SCIENCE EDUCATION : RESEARCH 1973

Edited by

R. P. TISHER

Australian Science Education Research Association
Enquiries relating to *Science Education : Research 1973* should be addressed to:

The Editor,
Science Education : Research 1973,
Faculty of Education,
University of Queensland,
BRISBANE, QUEENSLAND, 4067

Copyright © 1973 by Australian Science Education Research Association.
Registered in Australia for transmission by post as a book.
Published by Australian Science Education Research Association 1973.
Printed by the University of Queensland Printery.
CONTENTS

Preface

PART I: National and International Issues in Science Education
A national approach to science education research
Malcolm Rosier
The Interdisciplinary Approaches to Chemistry (IAC) Program and related research
Marjorie Gardner
A description of the development of assessment procedures for the Schools Council Integrated Science Project
Donald Hutchings

PART II: Teaching Strategies, Attitude and Enquiry Measures, and Surveys
ASEP in the classroom – some issues for research
Scott McKenzie
Teacher values and their association with teaching strategies in ASEP classes
Colin Power and Richard Tisher
Computerised Ausubel – Support for Ausubel’s theory from computer simulation studies
Leo West
The measurement of a scientific attitude – curiosity
R. Flegg and Austin Hukins
A note on a possible alternative to Likert scales
R. T. White and Lindsay Mackay
A test of enquiry skills
Barry Fraser
From the two cultures to money: Trends in enrolment in HSC subjects in Victoria
R. T. White
PART III: Analyses of Curricula

Content analysis as a technique for determining the structure of materials
Brian Carss

The role of the content and structure of curriculum material in cognition
John Clarke

Reflections on the social context of science education materials
Peter Fensham

Content analysis criteria for environmental education
Russel Linke

PART IV: Research Techniques

Some aspects of methods of placing people in groups
R. T. White

Analysis of covariance for comparisons of change
Barry McGaw

The Contributors

Page
105
107
119
143
151
161
163
169
175
PREFACE

Each year, for the past four years, the Australian Science Education Research Association, has been able to claim "a first". In 1970, the Association held its first annual conference; in 1971 its first publication appeared; in 1972, the proceedings of the annual conference appeared in a new format; and, this year we had our first international visitors who contributed to our annual conference. It is probably significant, too, that the annual meeting decided to change the name of the present publication.

Science Education: Research 1973 represents another significant step forward for the Australian Science Education Research Association. Not only is the publication a larger one than the previous issues of Research 1971 and Research 1972 — indicating an increase in research activity — but, it contains reports covering a wider range of issues in science education, and a special section dealing with research techniques. This last mentioned section was included in the conference with the express objective to develop our own understandings of some techniques which can be of great assistance to the science education researcher.

For convenience of presentation the papers have been grouped under headings, or themes. Although the responsibility for the groupings must again rest with the editor, it did seem that clusters fell, quite naturally, under the several headings. One of these was the Analyses of Curricula and the four papers related to this theme indicate a new area of research activity for Australian science educationists.

Science Education: Research 1973, though still a modest publication, is ample evidence of an increase in the number and quality of research projects in Australia. It demonstrates too, that we have international interests and ties. If the nature and quality of the papers contained in this publication are any guide, the future for science education research in Australia, looks brighter, if more challenging, than ever before.

R. P. Tisher
University of Queensland
THE CONTRIBUTORS

BRIAN CARSS is Reader in Education at the University of Queensland where he has a particular interest in the application of computers and computing technology to educational research problems.

He was educated in England and carried out all his postgraduate work at the University of Illinois. After receiving his doctorate, he worked for three years in the research laboratory of the Gulf Oil Corporation. In 1966 he returned to the University of Illinois to become Director of the ERIC/ECE Clearinghouse. In 1970 he was appointed Reader in Education at the University of Queensland.

JOHN CLARKE is Lecturer in Educational Psychology at the Kelvin Grove College of Teacher Education. He has taught in Queensland secondary schools and prior to his present appointment was a Science subject master. He is a graduate in Science and Education from the University of Queensland and is at present undertaking a Master of Educational Studies at that University. His main interests are in science curriculum evaluation and science classroom dynamics.

PETER FENSHAM is currently Professor of Science Education at Monash University after an earlier career that included work in physical chemistry and the social sciences. Before coming to Monash he was Reader in Physical Chemistry at Melbourne University. At present he is engaged in innovating new patterns of science teacher education.

R.B. FLEGG is a teacher of science in New South Wales secondary schools. He recently completed the Bachelor of Science (Education) course at the University of New South Wales where his special area of interest in the honours programme was the measurement of scientific attitudes.

BARRY FRASER is a Senior Teaching Fellow in Education at Monash University. Previously he has taught in Victorian schools and has been a part-time Research Officer at ASEp. He is a graduate in science and in education and is currently completing a Ph.D. in education. His main teaching and research interests are science education, test construction and curriculum evaluation.

MAJORIE GARDNER is Professor of Science Education in the Department of Chemistry and the Department of Secondary Education at the University of Maryland. She has helped to implement the CHEM Study, to develop the Earth Science Curriculum Project (ESCP) and the new Interdisciplinary Approaches to Chemistry (IAC) programme. Experimenting with self-pacing in large lecture sections at the University level, she recently received the O Haus Award for innovation in the teaching of College chemistry.
WILLIAM HALL is Director of the Schools Council Integrated Science Project which is housed at the Centre for Science Education, London. He has had teaching experience, has been in business (as a chief editor of a publishing company), and has done educational research (his doctorate was in science education). The past four years have been spent in curriculum development.

AUSTIN HUKINS is Professor of Science Education at the University of New South Wales. After some years as a science teacher in secondary schools in New South Wales, he was appointed to Sydney Teachers College and later became head of the Department of Chemistry there. In 1963 he completed his Ph.D. at the University of Alberta with a special interest in evaluation in science education. He was appointed to the University of New South Wales in 1970 where he is Director of the Bachelor of Science (Education) course as well as Professor of Science Education.

DONALD HUTCHINGS is a Senior Lecturer at Oxford University Department of Educational Studies where he directs a research unit concerned with the academic motivation and career orientation of secondary school pupils. He has taught science in the United States, Switzerland, and in Britain. Before taking up his appointment at Oxford in 1959, he was Vice-Principal of Bournville College of Further Education. He has been a Convener of the Schools Council Project Technology and a Consultant to a Royal Society working party on the relevance of university physics to industrial needs.

RUSSELL LINKE is a Research Fellow in Education at Monash University and is currently conducting a national survey of environmental education in Australia. The project is supported by a grant from the Australian Advisory Committee for Research and Development in Education. He is also completing a Ph.D. in Science Education. Russell Linke came to Victoria from South Australia where he completed a B.Sc. (Hons.) in Developmental Biology at Flinders University.

LINDSAY MACKAY is a Senior Lecturer in the Faculty of Education, Monash University. His main research interests have been in the areas of evaluation of the PSSC physics course in Victoria, the evaluation of secondary schools science curricula in Papua New Guinea, cognitive preferences in science and mathematics, and the effects of optional questions on examinations.

BARRY McGAW is Head of the Research and Curriculum Branch, Department of Education, Queensland. He was for some time a science and mathematics teacher in that State and in 1967 he joined the staff of Kedron Park Teachers College. In 1968 he became a Senior Research Officer with the Research and Curriculum Branch. During
1969-1972 he completed an M.Ed. and Ph.D. at the University of Illinois, U.S.A. He also has a B.Sc. and a B.Ed. with first class honours from the University of Queensland.

SCOTT McKENZIE is presently Science Master at Wavell High School in Brisbane, and A.S.E.P., National Trials Co-ordinator for Queensland. He was a member of a team of Queensland teachers which wrote the first draft of the A.S.E.P. unit "Sticking Together". His main interest lies in the field of curriculum development in Science.

COLIN POWER

Senior Lecturer in Education at the University of Queensland, has completed a Ph.D. study on the effects of communication patterns and feedback in science lessons. Dr. Power has served as a science teacher in various state high schools in Queensland, as a Research Officer for the Research and Curriculum Branch, State Education Department, Queensland, and as a Lecturer in Education, University of Queensland.

MALCOLM ROSIER

is a Chief Research Officer at the Australian Council for Educational Research. Prior to joining ACER he was a science teacher in various secondary schools in Western Australia. His main task at ACER is as a National Technical Officer in Australia for IEA (the International Association for Evaluation of Educational Achievement). He has been responsible for the conduct in Australia of the IEA Science Project. He is currently Secretary of the Australian Science Teachers Association.

RICHARD TISHER

Reader in Education at the University of Queensland, was, for some time, a science teacher in secondary schools in New South Wales, and a lecturer in Teachers Colleges. He joined the staff of the University of Queensland in 1963. Dr. Tisher’s research activities have been associated with science education, the effects of teaching strategies and teacher education.

LEO WEST

is Research Scholar in Education at Monash University currently involved in Ph.D. research project on the role of prior knowledge in the learning of science. He taught for nine years in Victorian state and independent schools prior to completion of B.Sc. (Hons.).

R. T. WHITE

Senior Lecturer in Education at Monash University. Dr. White has specialized in research into learning hierarchies. As well as his interest in Science Education, he has wide contact with educational research in general through his work as consultant on experimental design and statistics for his Faculty.
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 4

Proceedings of the Fifth Annual Conference of the Australian Science Education Research Association, Monash University, Clayton, Victoria, May 18 - 20, 1974,

Edited by: Russell D. Linke
and Leo H.T. West
General Editor: Richard P. Tisher

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All correspondence concerning this publication should be addressed to Professor R.P. Tisher, Faculty of Education, Monash University, Clayton, Victoria 3168, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>SECTION 1: Basic Issues in Science Education and Research</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservative Influences on Experimental Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Denis C. Phillips</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Term Effects of Science Education at School</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Peter J. Fensham</td>
<td></td>
</tr>
<tr>
<td>SECTION 2: Studies in Curriculum Development and Evaluation</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max N. Maddock and Wilson K. Kirina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measuring Adoption of the New Primary School Science Course in Victoria</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>David J. Symington</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Some Problems of Measurement Concerned with Science Practical Work for 11-13 Year-old Pupils</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Peter Coxhead and Richard C. Whitfield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An Analysis of Skills in Electrical Science</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>G. W. Beeson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Use of a Formative Evaluation Model for ASTEP</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Lindsay D. Mackay and Jeff R. Northfield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recent Developments in Psychomotor Domain Taxonomies of Educational Objectives and their Application to Experimental Science</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Robert W. deM Maclay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grades Based on Criterion-Referenced Assessment</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Michael P. McFarlane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluating Bilingual Teaching Materials — Relevant for Science?</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Clive B. Kings</td>
<td></td>
</tr>
<tr>
<td>SECTION 3: Instrument Development Studies</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selecting Evaluation Instruments</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Barry J. Fraser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measuring Attitudes held by High School Students and Minimally Educated Villagers in Papua New Guinea — An Instrument Development Study</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Max N. Maddock</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>IV.</td>
<td>Development of an Alternative to Likert Scaling: Tests of Perception of Scientists and Self (TOPOSS)</td>
<td>Lindsay D. Mackay and Richard T. White</td>
</tr>
<tr>
<td></td>
<td>Teachers’ Direction and Support of Student Behaviour</td>
<td>Ramon Lewis</td>
</tr>
<tr>
<td></td>
<td>Student Perceptions of Activities and Outcomes in South Australian Matriculation Biology Classes</td>
<td>Effie D. Best</td>
</tr>
<tr>
<td></td>
<td>Pupils’ Perceptions of their Science Learning Environments</td>
<td>Richard P. Tisher and Colin N. Power</td>
</tr>
<tr>
<td>SECTION 4:</td>
<td>General Aspects of Research Methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey Research — Some Problems</td>
<td>Ian D. Thomas</td>
</tr>
<tr>
<td></td>
<td>Notes on the Measurement of Affective Objectives</td>
<td>Lawrence C. Ingvarson</td>
</tr>
<tr>
<td></td>
<td>Multiple Regression as a General Data Analysis Technique</td>
<td>John T. McArthur and Leo H. T. West</td>
</tr>
<tr>
<td></td>
<td>The Measurement of Reliability for Subjective Rating Scales</td>
<td>Russell D. Linke</td>
</tr>
<tr>
<td></td>
<td>Research as a Knowledge Process: A Critical View</td>
<td>Robert E. Young</td>
</tr>
<tr>
<td>SECTION 5:</td>
<td>International Studies in Science Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Effects of the Conditions of Learning in the Schools on Educational Achievement</td>
<td>John P. Keeses</td>
</tr>
<tr>
<td></td>
<td>Implications of the Results of the I.E.A. Science Project for the Teaching of Science in Australia</td>
<td>Malcolm J. Rosier</td>
</tr>
<tr>
<td>SECTION 6:</td>
<td>Sex Differences in Achievement, Attitudes, and Personality of Science Students: A Review</td>
<td>Paul L. Gardner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PREFACE

For the past three years the Australian Science Education Research Association has published the proceedings of its annual conference. Two major changes have been made in the current publication. Firstly the editorial structure has changed — Richard Tisher continues as the general series editor, but beginning with this volume and continuing in future years new editors will be appointed for each volume. These will normally be from among the executive officers of the association, who are responsible for organising and conducting the annual conference. Secondly, there has been a further (and hopefully final) change of title for the publication. This edition is entitled Research in Science Education, Volume 4. The name highlights more specifically the primary interest — viz. research in science education — of the conference, and so also of the proceedings. The inclusion of a volume number rather than just a year seems appropriate to emphasise the series nature of the publication, and is also more suitable for reference citation.

The papers presented at the conference have been grouped into six different sections according to the nature of predominant emphasis. This does not mean that every paper in a particular section has the same philosophical or methodological basis, but simply that there is some general similarity of approach to educational research problems within each section. The groupings here have generally followed those determined at the conference, though with one important exception — the section on general methods of evaluation includes several working papers based on, or presented at, the relevant topical discussion sessions held in the latter part of the conference. These papers were not intended to describe or evaluate original research projects, but rather to present a brief review of arguments related to particular aspects of educational research or to particular methodological techniques. It was felt, nevertheless, that they might provide a useful basis for further research or discussion on these issues, and have therefore been included in this volume.

It should also be explained that because of the increasing number of papers and costs of publication, substantial editing was needed to reduce the overall amount of material and thus to keep the total cost of these proceedings within realistic limits. Further constraints of time prevented effective consultation with contributors during this process, and it is hoped that the essence and coherence of argument in all of the papers have been completely maintained. Certainly all relevant precautions have been taken, and the editors take full responsibility for the final result.

Russell D. Linke
Leo H.T. West.
THE CONTRIBUTORS

GEOFF BEESON
State College of Victoria, Hawthorn, Victoria.

EFFIE BEST
Research and Planning Branch, Education Department of South Australia.

PETER COXHEAD
Department of Education, University of Cambridge, Cambridge, U.K.

BARRY FRASER
Faculty of Education, Monash University, Clayton, Victoria.

PETER FENSHAM
Faculty of Education, Monash University, Clayton, Victoria.

PAUL GARDNER
Faculty of Education, Monash University, Clayton, Victoria.

LAWRENCE INGVARSON
Faculty of Education, Monash University, Clayton, Victoria.

JOHN KEEVES

CLIVE KINGS
Curriculum and Research Branch, Department of Education, Port Morsby, PNG.

WILSON KIRINA
Faculty of Education, Monash University, Clayton, Victoria.

RAMON LEWIS
School of Medicine, Flinders University, Bedford Park, South Australia.

RUSSELL LINKE
Department of Education, The University of Newcastle, New South Wales.

MAX MADDOCK
Darling Downs Institute of Advanced Education, Toowoomba, Queensland.

LINDSAY MACKAY
Faculty of Education, Monash University, Clayton, Victoria.

ROBERT MACLAY
Sydney Teachers’ College, Newtown, New South Wales.

JOHN MCArTHUR
Faculty of Education, Monash University, Clayton, Victoria.

JEFF NORTHFIELD
Faculty of Education, Monash University, Clayton, Victoria.

DENIS PHILLIPS
School of Education, Stanford University, Stanford, California, USA.

COLIN POWER
Department of Education, University of Queensland, St. Lucia, Queensland.

MALCOLM ROSIER
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAVID SYMMINGTON</td>
<td>State College of Victoria, Toorak, Victoria.</td>
</tr>
<tr>
<td>RICHARD TISHER</td>
<td>Faculty of Education, Monash University, Clayton, Victoria.</td>
</tr>
<tr>
<td>LEO WEST</td>
<td>Higher Education Research and Advisory Unit, Monash University, Clayton, Victoria.</td>
</tr>
<tr>
<td>RICHARD WHITE</td>
<td>Faculty of Education, Monash University, Clayton, Victoria.</td>
</tr>
<tr>
<td>RICHARD WHITFIELD</td>
<td>Department of Education, University of Cambridge, Cambridge, U.K.</td>
</tr>
<tr>
<td>ROBERT YOUNG</td>
<td>Faculty of Education, Monash University, Clayton, Victoria.</td>
</tr>
</tbody>
</table>
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 5

Edited by: A. M. Lucas
General Editor: Colin N. Power

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All correspondence concerning this publication should be addressed to Colin N. Power, Department of Education, University of Queensland, St. Lucia, 4067, Australia.
CONTENTS

Preface

Barry J. Fraser

The impact of ASEP on pupil learning and classroom climate

Colin N. Power and R. P. Tisher

Experimental studies of teacher structuring behaviour in ASEP classrooms

Jeff R. Northfield

Changing perspectives of science teacher education that may be associated with curriculum development

John M. Owen

A review of current and planned research concerning the Australian Science Education Project

Peter Fensham and Kaye Nickless

Detectives are born, not made

or

Two sides of a chemistry learning coin

Lindsay D. Mackay

Cognitive preferences and achievement in physics, chemistry, science and mathematics

Janet V. Knightley and Effice D. Best

Student expectations of grade 11 biology in some South Australian schools

W.C. Hall and J. Lawrence

An evaluation of the introductory clinical skills component of the 3rd year medical course at Adelaide University

P.R.B. Blood and A.H.A. Bensink

An example of the role of biometrics in teaching practical environmental science

B.G. Collins

Biology and the Keller plan

Page

(v)

1

13

23

33

43

49

59

69

77

87
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.C. Newman</td>
<td>Scientific methodology: A Feyerabendian view</td>
<td>99</td>
</tr>
<tr>
<td>Lindsay D. Mackay and Jeff R. Northfield</td>
<td>Validity of perceived need satisfaction as a curriculum evaluation criterion</td>
<td>113</td>
</tr>
<tr>
<td>R.L. Stanton and M.N. Maddock</td>
<td>Science Education and the Supernatural in Papua New Guinea</td>
<td>123</td>
</tr>
<tr>
<td>R. Trembath and R.T. White</td>
<td>Use of learning hierarchies in promoting mastery learning</td>
<td>135</td>
</tr>
<tr>
<td>Brian W. Carss</td>
<td>Thematic structural analysis applied to conceptual hierarchies</td>
<td>143</td>
</tr>
<tr>
<td>E. Jungwirth</td>
<td>Caveat Mentor — Let the teacher beware</td>
<td>153</td>
</tr>
<tr>
<td>P.L. Gardner</td>
<td>Logical connectives in science: A preliminary report</td>
<td>161</td>
</tr>
<tr>
<td>John W. Fisher and Robert L. Kimber</td>
<td>Grade placement of physical and chemical change concepts in primary school science</td>
<td>177</td>
</tr>
<tr>
<td>M.N. Maddock</td>
<td>Has Papua New Guinea’s three phase primary science program had any impact at secondary level?</td>
<td>189</td>
</tr>
<tr>
<td>J.T. McArthur, B.J. Fraser and L.H.T. West</td>
<td>Some issues in the simulation of ANOVA by multiple regression techniques</td>
<td>199</td>
</tr>
<tr>
<td>Contributors</td>
<td></td>
<td>209</td>
</tr>
</tbody>
</table>
PREFACE

This volume contains the papers presented at the sixth Annual Conference of the Australian Science Education Research Association held at Flinders University in May 1975. The papers reflect the diversity of interests of ASERA members; ranging from philosophy of science and science teaching to experimental studies in learning theory; from primary school science to preparation of doctors and agricultural scientists; and from studies based on local curriculum developments to investigations conducted overseas. The authors do not, therefore, share common research traditions; the commonality is provided by the subject area of the curriculum being investigated within these diverse paradigms.

The standard of the papers is encouraging. ASERA exists to provide a forum for describing work in progress; for discussing methodological issues of importance to the members; and for reporting work of interest mainly to Australian science educators and thus, inappropriate for many foreign journals. These objects are met, in part, by accepting papers for the conference without applying any "quality" criteria. Thus, the papers in the proceedings have not been subject to judgement by an editorial panel, although some were revised in the light of discussion after their presentation; yet few are below the standards of appropriate refereed journals.

The stimulus to research provided by the introduction of the Australian Science Education Project is evident again in this issue; but the interest of members in tertiary teaching/learning is also apparent. The latter is possibly an artifact stemming from the active soliciting of papers in this area by the conference, who also took other decisions that would invalidate studies of trends in Australian science education research based on comparison of this issue with early proceedings: a limit was placed on the number of papers associated with any single contributor, review articles were not accepted, and the short papers used as stimuli for workshop discussion groups have not been included here. The omission of the workshop papers was a deliberate decision of the conference convenors and is not a reflection on their importance; members' were told that the papers and discussion were not for publication in the belief that awareness of ultimate publication may have encouraged unproductive caution.

Professor Fisher has relinquished the position of general editor of the ASERA series. He has had a heavy responsibility, editing the first three volumes alone, and acting as general editor for Volume 4, being responsible for seeing the work through the press. This task was more difficult for him in his new position, at Monash, than it had been previously when he was at the University of Queensland. The Association greatly appreciates the extensive and ground work he laid as general editor; as members we look forward to his continued participation in conferences and thank him for his important role in establishing the Association and its publication.

I thank Effie Best and Ian Walker for their assistance in planning the conference reported here.

A.M. Lucas
Flinders University
11 August, 1975
THE CONTRIBUTORS

A.H.A. BENSINK Department of Entomology, University of Queensland.
EFFIE D. BEST Research and Planning Branch, Education Department, South Australia.
P.R.B. BLOOD Department of Entomology, University of Queensland.
BRIAN W. CARSS Education Department, University of Queensland.
BRIAN G. COLLINS Department of Biology, Western Australian Institute of Technology.
PETER FENSHAM Faculty of Education, Monash University.
JOHN W. FISHER Murray Park College of Advanced Education, South Australia.
BARRY J. FRASER Faculty of Education, Monash University.
P.L. GARDNER Faculty of Education, Monash University.
W.C. HALL Advisory Centre for University Education, University of Adelaide.
E. JUNGWIRTH Hebrew University of Jerusalem, Israel.
JANET V. KEIGHTLEY Research and Planning Branch, Education Department, South Australia.
ROBERT L. KIMBER Cleve Area School, South Australia.
J. LAWRENCE Queen Elizabeth Hospital, Woodville, South Australia.
LINDSAY D. MACKAY Faculty of Education, Monash University.
JOHN T. McARTHUR Faculty of Education, Monash University.
M.N. MADDOCK Department of Education, University of Newcastle, New South Wales.
B.C. NEWMAN Faculty of Education, University of New South Wales.
KAYE NICKLESS Faculty of Education, Monash University.
JEFF R. NORTHFIELD Faculty of Education, Monash University.
COLIN N. POWER Department of Education, University of Queensland
R.J. STANTON District Education Office, Mt. Hagen, Papua New Guinea.
R.P. TISHER Faculty of Education, Monash University.
R. TREMBATH State College of Victoria, Frankston.
LEO H. T. WEST
Higher Education Advisory & Research Unit, Monash University.

R.T. WHITE
Faculty of Education, Monash University.
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 6

Edited by: M.N. Maddock
General Editor: Colin N. Power

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All correspondence concerning this publication should be addressed to Dr. Colin N. Power, Department of Education, University of Queensland St. Lucia, 4067, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>(v)</td>
</tr>
<tr>
<td>D.M. Hill and A.J.D. Blake</td>
<td>Undergraduate research experience for future teachers; A first effort</td>
<td>1</td>
</tr>
<tr>
<td>C.E. Engel</td>
<td>Audio tape programmes for individual study</td>
<td>6</td>
</tr>
<tr>
<td>R.B. Flanagan</td>
<td>Effect of a programmable calculator physics laboratory unit upon some attitudes to physics held by student science teachers</td>
<td>15</td>
</tr>
<tr>
<td>I.A. Napper</td>
<td>The development of science concepts in primary children by discovery strategies</td>
<td>27</td>
</tr>
<tr>
<td>J.E. Butler</td>
<td>Normal science and science education</td>
<td>45</td>
</tr>
<tr>
<td>Edward E. Nunan</td>
<td>Science and perception</td>
<td>51</td>
</tr>
<tr>
<td>Jeff. R. Northfield</td>
<td>The effect of varying the mode of presentation of ASEP materials on pupils' perceptions of the classroom</td>
<td>63</td>
</tr>
<tr>
<td>Richard T. White and Lindsay D. Mackay</td>
<td>The effect of science courses on perception of scientists and self</td>
<td>73</td>
</tr>
<tr>
<td>Colin Power and Royce Sadler</td>
<td>Non-linear relationships between measures of classroom environments and outcomes</td>
<td>77</td>
</tr>
<tr>
<td>Anthony J.D. Blake</td>
<td>An examination of relationships between cognitive preferences, field-independence and level of intellectual development</td>
<td>89</td>
</tr>
</tbody>
</table>
Contents - contd.

P. L. Gardner, L. Schafe, U. Myint Thein and R. Watterson
Logical connectives in science: Some preliminary findings 97

Barry J. Fraser
Classroom climate as predictor and criterion in science education research 109

R. Lewis
Victorian students: What happens to them after Higher School Certificate? 121

Contributors 140
PREFACE

The choice of the University of Newcastle as the venue of the 1976 7th Annual Conference of the Australian Science Education Research Association marked an important stage in the evolution of the association and set an important precedent. For the first time, the conference was held at a centre other than a state capital, and another provincial venue, the Riverina College of Advanced Education in Wagga, New South Wales, was chosen for the 1977 conference. Representation from the Colleges of Advanced Education was much stronger than at previous conferences, and the choice of one of these colleges for the venue in 1977 acknowledges this trend.

As has been the practice in the past, the papers published in this journal are the formal research papers presented during the conference. They represent a cross-section of the interests of researchers in the area of Science Education in Australia.

In addition to the formal research reports, the conference again provided “kite-flying” discussion papers, which have not been published here. Two of these papers challenged some fundamental issues. One paper presented a point of view that alternative paradigms to those usually used in traditional science exist, which science educators should acknowledge. Two of the formal papers were also philosophically based and challenged the assumptions underlying science in relation to the teaching of the subject in schools.

The Newcastle and District Science Teachers Association, in a “kite-flying” paper challenged the kind of research being carried out, claiming that much of it has little relevance for the classroom practitioner, and taking the researchers to task for making too little use of avenues of publication which reached the classroom teacher and could be readily understood by them.

In the final session of the conference, the question was again raised as to whether some of the formal papers presented really fitted the concept of science education research which had been originally fostered by the association.

The consensus of opinion reached was that diversity of interest was a good thing for the association, and was to be encouraged. It was also agreed that members of the association could give more attention to research relevant to classroom practice, and should seek avenues of publication which reached the practising teacher more readily.

The Australian Science Education Project again provided the stimulus for a significant proportion of the formal papers presented, primary science was again represented, and tertiary teaching in medicine and teacher training also provided research reports. However, there were no reports at all from the areas of the main science disciplines and other applied science subjects at University level, and response to notification about the conference to faculties and departments of this kind was very limited. Many academics in these disciplines have been rather vocal about what the schools do or do not do, such as the physics academic who once claimed to the editor that “The Wyndham Scheme has destroyed Physics in New South Wales”.

While academics may be at the forefront in the search for knowledge in their own fields, many are archaic in their teaching approaches and ignorant of advances in the educational aspects of science. There is a need for wider representation from scientists interested in improving the quality of science education at tertiary level, and for scientists and educators to pursue research into science education problems at this level.

Despite this deficiency, the Newcastle conference can be regarded as a highly successful one. Thanks are expressed to all those people at the Newcastle College of Advanced Education, the University of Newcastle and Trans Australia Airlines who assisted in the organisation, with specific thanks to co-executive officer Terry Sheedy for undertaking a lion’s share of the work.

M.N. MADDOCK
The University of Newcastle
August 1976.
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.E. BUTLER</td>
<td>Lecturer in Education, The University of Queensland.</td>
</tr>
<tr>
<td>C.E. ENGEL</td>
<td>Associate Professor of Medicine, Head of Division of Medical Education, University of Newcastle, New South Wales.</td>
</tr>
<tr>
<td>BARRY J. FRASER</td>
<td>Lecturer in Education, Macquarie University, New South Wales.</td>
</tr>
<tr>
<td>P.L. GARDNER</td>
<td>Reader in Education, Monash University, Victoria.</td>
</tr>
<tr>
<td>LINDSAY D. MACKAY</td>
<td>Associate Professor of Education, Monash University, Victoria.</td>
</tr>
<tr>
<td>I.A. NAPPER</td>
<td>A/Senior Lecturer, Claremont College of Advanced Education, Western Australia.</td>
</tr>
<tr>
<td>JEFF R. NORTHFIELD</td>
<td>Lecturer in Education, Monash University, Victoria.</td>
</tr>
<tr>
<td>EDWARD E. NUNAN</td>
<td>Lecturer, Salisbury College of Advanced Education, Victoria.</td>
</tr>
<tr>
<td>COLIN POWER</td>
<td>Senior Lecturer in Education, The University of Queensland.</td>
</tr>
<tr>
<td>ROYCE SADLER</td>
<td>Lecturer in Education, University of Queensland.</td>
</tr>
<tr>
<td>L. SCHAFE</td>
<td>ERDC Research Training Fellow, Monash University, Victoria.</td>
</tr>
<tr>
<td>U. MYINT THEIN</td>
<td>Research Student (Education), Monash University, Victoria.</td>
</tr>
<tr>
<td>RICHARD T. WHITE</td>
<td>Senior Lecturer in Education, Monash University, Victoria.</td>
</tr>
<tr>
<td>RAY WATTERSON</td>
<td>Teacher, Education Department, Victoria.</td>
</tr>
</tbody>
</table>
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 7

Edited by: Anthony J. D. Blake, Riverina College of Advanced Education

General Editor: Colin N. Power, University of Queensland

Editorial Board: Arthur Lucas, Flinders University
Max Maddock, University of Newcastle
Leo West, Monash University
Richard White, Monash University

Business Manager: Jim Butler, University of Queensland

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All correspondence concerning this publication should be addressed to Prof. Colin N. Power, School of Education, Flinders University, Bedford Park, 5042, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. C. Newman</td>
<td>7</td>
</tr>
<tr>
<td>The nature of science problem</td>
<td></td>
</tr>
<tr>
<td>P. L. Gardner</td>
<td>9</td>
</tr>
<tr>
<td>Logical connectives in science: A summary of the findings</td>
<td></td>
</tr>
<tr>
<td>Richard T. White</td>
<td>25</td>
</tr>
<tr>
<td>A model of cognitive processes</td>
<td></td>
</tr>
<tr>
<td>N. C. Kellett, L. H. T. West and C. Woodruff</td>
<td>33</td>
</tr>
<tr>
<td>Measures of meaningful learning of intellectual skills</td>
<td></td>
</tr>
<tr>
<td>David J. Symington</td>
<td>41</td>
</tr>
<tr>
<td>Primary school pupils’ ability to see scientific problems in everyday phenomena</td>
<td></td>
</tr>
<tr>
<td>Sue McBurney</td>
<td>51</td>
</tr>
<tr>
<td>An evaluation of the implementation of the junior secondary science syllabus in N.S.W.</td>
<td></td>
</tr>
<tr>
<td>John M. Owen</td>
<td>61</td>
</tr>
<tr>
<td>School factors affecting curriculum change in science</td>
<td></td>
</tr>
<tr>
<td>Roger J. Osborne and Peter S. Freyberg</td>
<td>71</td>
</tr>
<tr>
<td>The systems approach and its application to curriculum research</td>
<td></td>
</tr>
<tr>
<td>M. N. Maddock</td>
<td>83</td>
</tr>
<tr>
<td>Formal schooling and the attitude of Papua New Guineans towards natural phenomena — a replication and extension study</td>
<td></td>
</tr>
<tr>
<td>Frederick J. Thomas</td>
<td>97</td>
</tr>
<tr>
<td>Suggestions from China on the “relevance” of science instruction</td>
<td></td>
</tr>
<tr>
<td>Effie D. Best</td>
<td>105</td>
</tr>
<tr>
<td>A student’s eye view of the biology classroom: Teacher, activities and outcomes.</td>
<td></td>
</tr>
<tr>
<td>Jeffrey R. Northfield and Barry J. Fraser</td>
<td>113</td>
</tr>
<tr>
<td>Teacher Characteristics and pupil outcomes in secondary science classrooms.</td>
<td></td>
</tr>
<tr>
<td>Janet V. Kightley</td>
<td>123</td>
</tr>
<tr>
<td>Sex differences in student perceptions for, and perceptions of, learning outcomes and classroom activities in Year 11 biology</td>
<td></td>
</tr>
</tbody>
</table>
Contents - contd.

M. J. Sullivan
Critical thinking in science — some problems in measurement 131

P. P. Lynch
Laboratory-based teaching in physical science and its relation to pupil attainment. 139

Renato Schibeci
Attitudes to science: A semantic differential instrument. 149

Roger J. Osborne
Subjectively assessed student profiles in physics 157

J. K. Gilbert
The study of student misunderstandings in the physical sciences. 165

P. P. Lynch and G. C. Gerrans
The aims of first year chemistry courses, the expectation of new students and subsequent course influences. 173

C. B. Kings
Social characteristics, motivations, achievements and choices of H.S.C. subjects of environmental studies in a tertiary institution — some preliminary findings. 181

R. Lewis
Transition from Year 12 schooling to the workface: Does scientific achievement help? 193

R. A. Fawns
Student teacher questioning in two enquiry directed settings of science teaching. 203

John Ainley
The impact of science facilities on science learning. 213

Geoffrey W. Beeson
The application of theoretical research findings to a practical learning problem. 223

Lindsay D. Mackay and Richard T. White
Changes in pupils' perceptions of scientists, science teachers and self. 231

Contributors 239
PREFACE

The papers published in this journal represent the majority of papers presented at the 8th Annual Conference of the Australian Science Education Research Association. It was the second occasion that the conference was held at a provincial venue and the first time that the host institution was a College of Advanced Education.

As twenty-eight formal research papers were presented at the conference, authors were requested to constrain the length of papers so that the volume stayed within reasonable size limits. However, every effort has been made to ensure that each paper published is in accord with the conference presentation.

The relatively large number of contributions at the conference ranged over a wide area of interests in science education. White introduced a thought-provoking model of cognitive processes which has implications well beyond science education. Osborne and Freyberg discussed a systems approach to curriculum research which similarly has broad implications. On the other hand, many other contributors concentrated on specific topics of concern in science education. Amongst these papers one will note some concentration upon issues associated with science education at secondary and tertiary levels. Conversely, only one paper dealt with research into aspects of primary science education. It is to be hoped that the increased interest in science in the primary curriculum will be supported by a greater degree of research activity in the area in the future.

Anthony J. D. Blake
School of Teacher Education
Riverina College of
Advanced Education.
LABORATORY BASED TEACHING IN PHYSICAL SCIENCE
AND ITS RELATION TO PUPIL ATTAINMENT

P. P. Lynch

Introduction

Within the last two decades there has been what might be termed a revolution in science education which has strongly influenced both teaching objectives and instructional methods. This revolution is essentially neo-heuristic with the emphasis on *guided discovery*, and in this respect is more controlled and more controllable than Armstrong's heurism (Herman, 1969). Support for the adoption of the discovery has been further stimulated by the compelling writings of behaviourists (Ausubel, 1968; Bruner, 1961; Gagné, 1965). Such a method is usually seen, ideally, as *replacing* conventional laboratory and traditional expository methods rather than as an alternative. Yet, in spite of the virtually unreserved promotion of such methods in schools there is little if any evidence to justify their *teaching and learning* effectiveness over traditional methods (Babikian, 1971).

In more recent years discovery methods and related curricula have been introduced, to the Third World, where *cost-effectiveness* is of critical importance. It should be noted that most curriculum work in the Third World involves English as the medium of instruction. Inevitably, this curriculum work is neo-heuristic and, unfortunately, the much broader spectrum of European opinion is largely ignored. European opinion on such matters as teaching methods and the value of experimental work in schools varies widely — contrary to popular opinion (Thompson, 1972). *We are not* all moving in the same direction.

The problem

The results reported here have been abstracted from a national survey into the nature, purpose and organisation of practical work (Lynch, 1977), carried out in South African High Schools and Universities. Inevitably, within the general data available there is much information related to specific problems, in this case, the effectiveness of different teaching methods in relation to pupil attainment. The South African situation is of considerable interest because as far as science teaching is concerned teaching methods are influenced as much by European as British/American tradition. The Afrikaans speaking community draws much of its inspiration from German-Dutch tradition and this is maintained by the interchange of teachers and educators from those countries. The English speaking community tends, by comparison, to look to Britain and the U.S. for its teaching models. However, all school pupils complete the same matriculation examinations irrespective of language of instruction or teaching method employed.

Procedure and results

First year university students were asked to indicate their experience of *experimental techniques*, *specific types of practical work* and *standard experiments* at High School level by means of a questionnaire.
The questionnaire was constructed after a careful literature survey of similar studies (Kerr, 1963) and with the aid of an inquiry team and an advisory steering committee composed of 32 persons actively involved with school and university teaching in South Africa. The inquiry team and the committee reviewed each question and item with regard to syntax and relevance, and eliminated or added items. By this means the questionnaire was reviewed and rewritten three times, and we feel that full use was made of the collective wisdom and experience of all concerned.

The questionnaire was given to the students during a normal but previously undisclosed lecture period at the beginning of their specific first year courses. Students were given a short standardised preamble explaining the purpose of the survey, and aimed at winning the students’ interest, cooperation and confidence. Each question was administered separately, clearly read and explained with an example. Approximately 40 minutes was taken to complete the items and by these means questionnaires were usually returned fully completed. A section for free comment was available and students were encouraged to use this. Careful scrutiny of this and the care taken with completion of individual items was taken as a measure of student cooperation. Less than 1% of the sample needed to be eliminated as a consequence of any tell-tale indications of careless completion or facetious comment.

The items included in the questionnaire were as follows:

(a) Frequency of use of experimental techniques: A list of experimental techniques considered to be of central importance in secondary level physical science was drawn up with the help of the advisory steering committee. Of the fifteen techniques finally listed (Table 2), items 1, 2, 5, 9 and 10 are general techniques, items 3, 4, 6, 7 and 8 more specific to chemistry and items 11, 12, 13, 14 and 15 are more specific to physics.

Students were asked to indicate whether or not they knew about, had seen done, or had carried out the techniques themselves.

If the students marked the last category, they were asked to indicate the frequency using the 5 point scale

1 = never (but seen done)
2 = seldom
3 = moderately often
4 = often
5 = very often

The mean scores for each item are given in Table 2.

(b) Frequency of use of different types of practical work. Students were asked to indicate the extent to which three types of practical work were carried out at school, namely, demonstrations, group work or individual work. For the purpose of this inquiry and on the advice of the advisory steering committee it was decided that experiments involving 1 or 2 pupils would be termed 'individual work'. No attempt was made at this stage to distinguish between standard exercises, discovery experiments and project work.

The frequency of use of the three categories of practical work were measured on the 5 point scale

every period = 1
x 2 per week = 2
x 1 per week = 3
x 1 per month = 4
never = 5
Students were asked to indicate which category *most nearly* represented their High School experience.

The mean scores obtained are given in Table 3.

(c) The use of standard experiments in physics and chemistry: Fourteen experiments (seven in physics and seven in chemistry) taken from relevant school syllabi were considered by the advisory steering committee to represent a comprehensive coverage for any physical science syllabus (Table 4 below). The method of use or not of the standard experiments was measured in the categories ‘know about (only)’, ‘seen done’ and ‘carried out myself’. The first category indicates no school experience of that particular standard experiment. The second category, ‘seen done’ indicates experience of a demonstration of the experiment. The third column, ‘carried out myself’ indicates direct experience in the form of individual or group work.

Mean scores based on the corresponding 3 point scale are given in Table 4. A discussion dealing with the percentages involved in the different categories has appeared elsewhere (Colussi, 1975).

The sample

The questionnaire responses for first year University students in Faculties of Science, Engineering and Medicine were obtained from an urban and a rural university in which the medium of instruction is specifically English (the Witwatersrand and Rhodes), and specifically Afrikaans (Pretoria and Stellenbosch). This total sample was considered to be representative of first year science, medical and engineering students at universities for white pupils in South Africa. Further details of the sample are provided in Table 1.

TABLE 1

Details of sample size and structure

<table>
<thead>
<tr>
<th>University</th>
<th>Sample Size</th>
<th>Faculties Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witwatersrand</td>
<td>728</td>
<td>Science/Engineering/Medicine</td>
</tr>
<tr>
<td>Rhodes</td>
<td>114</td>
<td>Science/Engineering</td>
</tr>
<tr>
<td>Pretoria</td>
<td>906</td>
<td>Science/Engineering/Medicine</td>
</tr>
<tr>
<td>Stellenbosch</td>
<td>604</td>
<td>Science/Engineering/Medicine</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2352</td>
<td></td>
</tr>
</tbody>
</table>

Analysis and display of results

The data from the questionnaire was transferred onto punch cards, verified, and finally stored on magnetic tape.

Analysis of the data was achieved using the computer package SPSS (Statistical Package for the Social Sciences). Mean scores, standard deviations and variances with regard to
<table>
<thead>
<tr>
<th>Experimental Techniques</th>
<th>Entire Population</th>
<th>TVE</th>
<th>JMB</th>
<th>NSC</th>
<th>CAPE SC</th>
<th>OFSLC</th>
<th>NATAL SC</th>
<th>Other</th>
<th>Significance of differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weighing (on a rough balance)</td>
<td>2.2</td>
<td>1.9</td>
<td>3.0†</td>
<td>2.2</td>
<td>2.1</td>
<td>2.4</td>
<td>3.3</td>
<td>3.1†</td>
<td>*</td>
</tr>
<tr>
<td>2. Weighing (to at least 3 figure accuracy)</td>
<td>1.8</td>
<td>1.4</td>
<td>2.5</td>
<td>1.5</td>
<td>1.8</td>
<td>2.7</td>
<td>2.6</td>
<td>3.2†</td>
<td>*</td>
</tr>
<tr>
<td>3. Titrating with a burette</td>
<td>2.0</td>
<td>1.6</td>
<td>2.9</td>
<td>1.4</td>
<td>2.1</td>
<td>2.4</td>
<td>3.4†</td>
<td>3.6†</td>
<td>*</td>
</tr>
<tr>
<td>4. Using a pipette</td>
<td>2.1</td>
<td>1.8</td>
<td>3.0†</td>
<td>1.8</td>
<td>2.1</td>
<td>2.7</td>
<td>3.4†</td>
<td>3.6†</td>
<td>*</td>
</tr>
<tr>
<td>5. Measuring of volume with a measuring cylinder</td>
<td>2.5</td>
<td>2.2</td>
<td>3.2†</td>
<td>2.2</td>
<td>2.4</td>
<td>3.1†</td>
<td>3.5†</td>
<td>3.4†</td>
<td>*</td>
</tr>
<tr>
<td>6. Filtering, using filter paper in a funnel</td>
<td>2.1</td>
<td>1.8</td>
<td>3.0†</td>
<td>1.8</td>
<td>2.1</td>
<td>2.6</td>
<td>2.9</td>
<td>3.1†</td>
<td>*</td>
</tr>
<tr>
<td>7. Crystallising</td>
<td>1.7</td>
<td>1.6</td>
<td>2.1</td>
<td>1.5</td>
<td>1.6</td>
<td>1.8</td>
<td>2.1</td>
<td>2.1</td>
<td>*</td>
</tr>
<tr>
<td>8. Distilling</td>
<td>1.4</td>
<td>1.3</td>
<td>1.7</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.8</td>
<td>1.9</td>
<td>*</td>
</tr>
<tr>
<td>9. Heating with a bunsen burner</td>
<td>2.9</td>
<td>2.4</td>
<td>3.1†</td>
<td>2.6</td>
<td>2.8</td>
<td>3.6†</td>
<td>4.3†</td>
<td>3.9†</td>
<td>*</td>
</tr>
<tr>
<td>10. Measuring with a metre rule</td>
<td>3.2†</td>
<td>3.0†</td>
<td>3.7†</td>
<td>3.1†</td>
<td>3.1†</td>
<td>3.9†</td>
<td>3.9†</td>
<td>3.7†</td>
<td>*</td>
</tr>
<tr>
<td>11. Measuring with a micrometer screw</td>
<td>1.4</td>
<td>1.3</td>
<td>2.0</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>2.3</td>
<td>*</td>
</tr>
<tr>
<td>12. Measuring pressure with a manometer or pressure gauge</td>
<td>1.4</td>
<td>1.3</td>
<td>1.6</td>
<td>1.5</td>
<td>1.3</td>
<td>2.0</td>
<td>2.0</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>13. Reading an ammeter or voltmeter</td>
<td>2.7</td>
<td>2.4</td>
<td>3.2†</td>
<td>2.9</td>
<td>2.4</td>
<td>3.1†</td>
<td>2.8</td>
<td>3.0†</td>
<td>*</td>
</tr>
<tr>
<td>14. Reading a thermometer</td>
<td>3.0†</td>
<td>2.7</td>
<td>3.8†</td>
<td>2.8</td>
<td>2.9</td>
<td>3.8†</td>
<td>4.1†</td>
<td>3.9†</td>
<td>*</td>
</tr>
<tr>
<td>15. Connecting up an electrical circuit</td>
<td>2.4</td>
<td>2.1</td>
<td>3.0†</td>
<td>2.6</td>
<td>2.2</td>
<td>3.7†</td>
<td>3.6†</td>
<td>2.8</td>
<td>*</td>
</tr>
<tr>
<td>OVERALL MEAN SCORE</td>
<td>2.2</td>
<td>1.9</td>
<td>2.9</td>
<td>2.1</td>
<td>2.1</td>
<td>2.8</td>
<td>3.0</td>
<td>3.0</td>
<td>*</td>
</tr>
</tbody>
</table>

Note: † = mean score in moderate-often range.

a mean score less than 1.8 indicates that the majority have never carried out that technique

Key: never seldom moderately often often very often

* = differences significant at the 0.5% level
TABLE 3

Mean scores for type of practical work used by students associated with different Examination Boards

<table>
<thead>
<tr>
<th>Type of Practical Work</th>
<th>Entire Population</th>
<th>TVE</th>
<th>JMB</th>
<th>NSC</th>
<th>CAPE SC</th>
<th>OFSLC</th>
<th>NATAL SC</th>
<th>Other</th>
<th>Significance of differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of demonstrations</td>
<td>2.9</td>
<td>3.2</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.8</td>
<td>*</td>
</tr>
<tr>
<td>Frequency of group work</td>
<td>3.9</td>
<td>4.1</td>
<td>3.6</td>
<td>4.0</td>
<td>3.9</td>
<td>3.0</td>
<td>3.3</td>
<td>3.7</td>
<td>*</td>
</tr>
<tr>
<td>Frequency of individual work</td>
<td>4.4</td>
<td>4.6</td>
<td>3.7</td>
<td>4.4</td>
<td>4.3</td>
<td>3.9</td>
<td>3.7</td>
<td>3.4</td>
<td>*</td>
</tr>
<tr>
<td>Number of students in sample</td>
<td>2279</td>
<td>683</td>
<td>180</td>
<td>89</td>
<td>488</td>
<td>106</td>
<td>89</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

Key:

- **1** = mean score in moderate-often range.
- **2** = mean score less than 1.8 indicates that the majority have never carried out that technique

Note:

- **Key:**
 - never
 - seldom
 - moderately often
 - often
 - very often

- *** = differences significant at the 0.5% level**
TABLE 4

Mean scores for use of standard experiments by students associated with different Examination Boards

<table>
<thead>
<tr>
<th>Standard Experiments</th>
<th>Entire Population</th>
<th>TVE</th>
<th>JMB</th>
<th>NSC</th>
<th>CAPE SC</th>
<th>OFSLC</th>
<th>NATAL SC</th>
<th>Other</th>
<th>Significance of differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ‘Acceleration’</td>
<td>2.2</td>
<td>2.1</td>
<td>1.9</td>
<td>1.9</td>
<td>2.5</td>
<td>2.6</td>
<td>2.3</td>
<td>1.5#</td>
<td>*</td>
</tr>
<tr>
<td>2. ‘g’</td>
<td>2.1</td>
<td>1.8</td>
<td>1.9</td>
<td>1.7#</td>
<td>2.6</td>
<td>2.5</td>
<td>2.1</td>
<td>1.3#</td>
<td>*</td>
</tr>
<tr>
<td>3. ‘Specific or latent heat’</td>
<td>1.7#</td>
<td>1.5#</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
<td>2.2</td>
<td>2.1</td>
<td>1.5#</td>
<td>*</td>
</tr>
<tr>
<td>4. ‘Focal length’</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>1.6#</td>
<td>*</td>
</tr>
<tr>
<td>5. ‘Electrical resistance’</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.7</td>
<td>2.3</td>
<td>1.6#</td>
<td>*</td>
</tr>
<tr>
<td>6. ‘Electric motor’</td>
<td>1.8</td>
<td>1.7#</td>
<td>1.8</td>
<td>2.1</td>
<td>1.8</td>
<td>2.0</td>
<td>1.8</td>
<td>1.4#</td>
<td>*</td>
</tr>
<tr>
<td>7. ‘Interference patterns’</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
<td>2.1</td>
<td>2.2</td>
<td>2.5</td>
<td>1.9</td>
<td>1.7#</td>
<td>*</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ‘Solubility’</td>
<td>1.9</td>
<td>1.7#</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>2.2</td>
<td>2.0</td>
<td>1.6#</td>
<td>*</td>
</tr>
<tr>
<td>2. ‘Chemistry of an element’</td>
<td>1.6#</td>
<td>1.5#</td>
<td>1.8</td>
<td>1.6#</td>
<td>1.7#</td>
<td>1.7#</td>
<td>1.9</td>
<td>1.5#</td>
<td>*</td>
</tr>
<tr>
<td>3. ‘Organic or inorganic prep’</td>
<td>1.7#</td>
<td>1.6#</td>
<td>1.8</td>
<td>1.5#</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.6#</td>
<td>*</td>
</tr>
<tr>
<td>4. ‘Rate of reaction’</td>
<td>1.7#</td>
<td>1.6#</td>
<td>1.7#</td>
<td>1.7#</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>1.4#</td>
<td>*</td>
</tr>
<tr>
<td>5. ‘Molecular models’</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
<td>2.1</td>
<td>1.8</td>
<td>1.8</td>
<td>1.6#</td>
<td>*</td>
</tr>
<tr>
<td>6. ‘Vapour density or molecular weight’</td>
<td>1.3#</td>
<td>1.3#</td>
<td>1.4#</td>
<td>1.3#</td>
<td>1.3#</td>
<td>1.7#</td>
<td>1.6#</td>
<td>1.5#</td>
<td>*</td>
</tr>
<tr>
<td>7. ‘Acids and bases’</td>
<td>1.8</td>
<td>1.7#</td>
<td>2.0</td>
<td>1.8</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
<td>1.6#</td>
<td>*</td>
</tr>
</tbody>
</table>

= majority of students have neither seen the experiment nor carried it out themselves.

A mean score greater than 2.4 indicates that the majority have carried out that experiment themselves.

Key:
1. know about (only)
2. seen done
3. carried out myself

* = differences significant at the 0.5% level
individual items were calculated for total samples and for various sub-groups. The significances of the differences were assessed using one way analyses of variances (F tests). In the tabulated data, here, the level of significance of the difference if it exceeds the 0.5% level is marked thus. * *. This relatively high level of significance has been used in view of the inherent difficulties that are associated with the interpretation of data obtained by survey methods (Gardner, 1975).

Findings — General

Students indicate that the choice of content, the teaching method and the time spent on practical works at High School varies widely. Student experience of even very elementary practical techniques such as heating with a bunsen burner or connecting up an electric circuit varies considerably. A full analysis and description of this experience and its implications are provided elsewhere (Colussi, 1976).

In order to explore the factors most important in determining these differences the sample was examined with respect to variables such as sex differences, type and size of schools, language medium and Examination Board.

There are some considerable differences in experience (judged by mean scores) between private and government schools, between single sex and co-educational schools and between English and Afrikaans medium schools. However the greatest overall differences between mean scores are produced when the sample is examined with respect to Examination Board. * 1

Mean scores for the entire population and for the different examination boards are given for that reason. The scale used in Table 2, is non-linear but as a rough guide OFS and Natal SC students indicate experience, on average, of twice as many demonstrations and almost four times as much group work as TVE students. By comparison with the ‘entire population’, OFS, Natal SC, JMB and ‘Other’ students have considerably more experience of all three types of practical work.

The results in Table 3 are consistent with those obtained in Table 2. The overall mean score gives a crude indication of the average frequency of techniques and OFS, Natal SC, JMB and ‘Other’ students have a mean score equivalent to ‘moderately often’. Students associated with the TVE, NSC and Cape SC have mean scores approximately equivalent to ‘seldom’.

The scale used in Table 4 is particularly constricted. A mean score less than 1.8 is associated with the majority of students having no experience of that experiment, while a mean score greater is associated with the majority having experience of individual or group work.

The results for the ‘Other’ group suggest that the latter have a more technique oriented background than South African students. The TVE column in Table 4 needs to be interpreted with caution since further examination showed that English and Afrikaans medium schools have very different experience of the standard experiments listed.

The prime reason for presenting the data in this form is to show that the experience of the items chosen in the questionnaire do, indeed, vary widely, and that there are significant differences between certain sub-groups.

Findings with respect to matriculation grade

The mean scores for students with different matriculation grades are given in Tables 5-7. The codification, A to F represents grades from distinction (A) to fail (F).
TABLE 5
Mean scores for frequency of use of experimental techniques by students with different matriculation grades

<table>
<thead>
<tr>
<th>Experimental Techniques</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation Grade</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2.1</td>
<td>1.6</td>
<td>1.9</td>
<td>2.1</td>
<td>2.3</td>
<td>2.0</td>
<td>1.6</td>
<td>1.3</td>
<td>2.7</td>
<td>3.2</td>
<td>1.3</td>
<td>1.4</td>
<td>2.6</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>B</td>
<td>2.1</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.4</td>
<td>2.0</td>
<td>1.6</td>
<td>1.3</td>
<td>2.8</td>
<td>3.3</td>
<td>1.3</td>
<td>1.5</td>
<td>2.7</td>
<td>3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>C</td>
<td>2.1</td>
<td>1.7</td>
<td>2.0</td>
<td>2.1</td>
<td>2.5</td>
<td>2.1</td>
<td>1.7</td>
<td>1.4</td>
<td>2.8</td>
<td>3.1</td>
<td>1.4</td>
<td>1.4</td>
<td>2.7</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>D</td>
<td>2.1</td>
<td>1.7</td>
<td>1.9</td>
<td>2.1</td>
<td>2.5</td>
<td>2.1</td>
<td>1.7</td>
<td>1.4</td>
<td>2.8</td>
<td>3.1</td>
<td>1.4</td>
<td>1.3</td>
<td>2.6</td>
<td>2.8</td>
<td>2.3</td>
</tr>
<tr>
<td>E</td>
<td>2.2</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>2.4</td>
<td>2.0</td>
<td>1.6</td>
<td>1.5</td>
<td>2.6</td>
<td>3.1</td>
<td>1.6</td>
<td>1.3</td>
<td>2.5</td>
<td>2.9</td>
<td>2.2</td>
</tr>
<tr>
<td>F</td>
<td>2.1</td>
<td>1.9</td>
<td>2.1</td>
<td>2.3</td>
<td>2.6</td>
<td>2.2</td>
<td>2.0</td>
<td>1.5</td>
<td>3.5</td>
<td>3.2</td>
<td>1.3</td>
<td>1.1</td>
<td>2.7</td>
<td>3.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Significance of differences

* * *

TABLE 6
Mean scores for type of practical work used by students with different matriculation grades

<table>
<thead>
<tr>
<th>Type of Practical work</th>
<th>Frequency of demonstrations</th>
<th>Frequency of group work</th>
<th>Frequency of individual work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3.0</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>B</td>
<td>2.9</td>
<td>3.9</td>
<td>4.4</td>
</tr>
<tr>
<td>C</td>
<td>2.8</td>
<td>3.8</td>
<td>4.4</td>
</tr>
<tr>
<td>D</td>
<td>2.9</td>
<td>3.9</td>
<td>4.4</td>
</tr>
<tr>
<td>E</td>
<td>2.9</td>
<td>3.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Significance of differences

Students with F (fail) grades at Matriculation level have rather less experience of practical work but the differences are not usually significant at the 0.5% level.

There are a few instances where the differences of experience are significant (see Tables 6 and 7) and these are due to F grade students. But the similarities are more striking than the differences particularly when compared with the previous tables.

Our interpretation of these results is that there is an absence of any correlation between amount of practical work, type or nature of practical work experienced and matriculation grade obtained.
TABLE 7

Mean scores for frequency of use of standard experiments by students with different matriculation grades

<table>
<thead>
<tr>
<th>Physics Experiments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.3</td>
<td>2.2</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>B</td>
<td>2.2</td>
<td>2.1</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>C</td>
<td>2.1</td>
<td>2.0</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>2.2</td>
<td>2.1</td>
<td>1.7</td>
<td>2.1</td>
<td>2.0</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>E</td>
<td>2.3</td>
<td>2.0</td>
<td>1.7</td>
<td>2.0</td>
<td>2.0</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>F</td>
<td>2.3</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemistry Experiments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.9</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.9</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.4</td>
<td>1.6</td>
<td>1.7</td>
<td>2.0</td>
<td>1.3</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Significance of differences

Discussion

The terminal examination in question, University Matriculation, is little different to the equivalent examinations used in, for example, the U.K, the U.S or Australia. Use is made of both multiple choice, structured, and essay type questions and every attempt is made to cover the usual accepted range of cognitive skills. The syllabus content, itself, shows the influence of various well established curricula such as Chem Study, PSSC Physics, Nuffield O-level and A-level etc. The standard of attainment aimed at is about equivalent to one year of sixth form work in the U.K. It is performance, measured by this examination, which is unrelated to choice or even use of practical work. There is, thus, no evidence that practical work reinforces learning or that it encourages students to learn more in relation to established ‘academic’ assessment.

Neither the motivational affects nor the acquisition of laboratory or related organisational skills are considered here but will be reported at a later stage. But, the absence of any apparent benefit as far as the acquisition of scientific knowledge is concerned has some serious implications for curriculum developers, generally. If cost-effectiveness is of a paramount importance as in third world situations, then more attention needs to be paid to the nature and extent of the practical work used.

Discovery-type programmes are more expensive to set up and to maintain, apart from, in many cases, being more difficult to organise at a teaching, in-service and administrative level. Programmes placing more emphasis on the lecture-demonstration method may offer a more convenient, cheaper and as effective an answer.

Footnote

1. The codifications used in Tables 2, 3 and 4 refer to the Examination Boards, and their respective Matriculation Examinations required for university entrance.
They are as follows: TVE = Transvaal University Matriculation, JMB = Joint Matriculation Board, NSC = National Senior Certificate, Cape SC = Cape Senior Certificate, OFSLC = Orange Free State Leaving Certificate, Natal SC = Natal Senior Certificate.

‘Other’ = (usually) U.K. or Rhodesian O/A level Certificate.

References

THE CONTRIBUTORS

JOHN AINLEY
Senior Research Officer, A.C.E.R.

GEOFFREY W. BEESON
Head, Dept. of Curriculum and Teaching, Rusden S.C.V.

EFFIE D. BEST
Senior Research Officer, S.A. Dept. of Education.

R. A. FAWNS
Lecturer, Faculty of Education, University of Melbourne.

BARRY J. FRASER
Lecturer in Education, Macquarie University.

PETER S. FREYBERG
Professor of Education, University of Waikato, N.Z.

P. L. GARDNER
Reader, Faculty of Education, Monash University.

J. K. GILBERT
Senior Lecturer, Institute of Educational Technology, University of Surrey, U.K.

JANET V. KEIGHTLEY
Research Officer, S.A. Dept. of Education.

N. C. KELLETT
Lecturer, HEARU, Monash University.

C. B. KINGS
Lecturer, Rusden S.C.V.

R. LEWIS
Lecturer, School of Education, Latrobe University.

P. P. LYNCH
Lecturer, Faculty of Education, University of Tasmania.

L. D. MACKAY
Assoc. Professor, Faculty of Education, Monash University.

M. N. MADDOCK
Senior Lecturer in Education, University of Newcastle.

SUE McBURNEY
Research Officer, CRIME, Dept. of Education, N.S.W.

B. C. NEWMAN
Senior Lecturer, School of Education, University of New South Wales.

JEFFREY R. NORTHFIELD
Lecturer, Faculty of Education, Monash University.

ROGER J. OSBORNE
Senior Lecturer, Physics Dept., University of Waikato, N.Z.

JOHN M. OWEN
Senior Research Officer, A.C.E.R.

RENAITO SCHIBECI
Lecturer, School of Education, Murdoch University.
M. J. SULLIVAN Research Officer, S.A. Dept. of Education.

DAVID J. SYMINGTON Senior Lecturer, Toorak S.C.V.

FREDERICK J. THOMAS Lecturer, School of Teacher Education, Riverina C.A.E.

L. H. T. WEST Senior Lecturer, HEARU, Monash University.

RICHARD T. WHITE Associate Professor, Faculty of Education, Monash University.

C. WOODRUFF E.R.D.C. Research Fellow, Monash University.
RESEARCH

IN

SCIENCE EDUCATION

VOLUME 8

Edited by: Campbell J. McRobbie, Mount Gravatt College of Advanced Education

General Editor: Colin N. Power, Flinders University

Editorial Board: Arthur Lucas, Flinders University
 Max Maddock, University of Newcastle
 Leo West, Monash University
 Richard White, Monash University

Business Manager: Jim Butler, University of Queensland

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Colin N. Power, School of Education, Flinders University, Bedford Park, 5042, Australia.

Library subscriptions to the Business Manager, Dr J. Butler, Education Department, University of Queensland, St. Lucia, 4067, Australia.
CONTENTS

Preface

Barry C. Newman
 The scientific status of any so called science
 1

J.E. Butler
 Epistemology in the language of the science classroom
 11

Rod Fawns
 The rough theatre of science teaching in the compulsory years
 rationality & artistry
 25

G. Wayan Seregeg
 Some implications of the introduction of enquiry methods to
 the integrated science curriculum in Indonesia
 35

Elizabeth H. Hegarty
 Levels of scientific enquiry in university science laboratory classes:
 Implications for curriculum deliberations
 45

D.A. Mitchell
 The production of criteria for evaluating science curriculum materials
 with specific reference to criteria for inquiry and the application
 of these criteria to chemistry curriculum materials
 59

John Dekkers
 The effects of junior inquiry science programs on student cognitive
 and activity preferences in science
 71

A. John Rentoul and Barry J. Fraser
 Measuring perceptions of inquiry and open learning environments
 79

Adrian Fordham
 The interaction of student characteristics and science teaching on
 student perception of the learning environment
 89

John Ainley
 Science facilities and variety in science teaching
 99

John M. Owen
 The role of linkage mechanisms in promoting educational change
 110

James M. Richmond
 Some outcomes of an environmental knowledge and attitudes survey
 in England
 119

M.N. Maddock
 An exploratory study in school assessment: The relationship between
 achievement and attitude scales
 127
Contents - contd.

W.F. Beasley
Laboratory psychomotor skill development using physical and mental practice strategies 135

Lawrence G. Little and Rob, W. de M-Maclay
Skills and skills tests in experimental physics 145

Miles A. Nelson
Questioning questioning Part 1 157

David J. Symington
Primary school pupil’s ability to see investigable scientific problems in everyday phenomena: The teacher’s role 167

P.Lynch, P. Benjamin, T. Chapman, R. Holmes, R. McCammon, A. Smith, R.Symons
Scientific language and the high school pupil: Part 1 175

R.D. Linke and M.I. Venz
Misconceptions in physical science among non-science background students 183

P.P. Sedgwick, R.D. Linke and A.M. Lucas
A comparison of changes in children’s concepts of life with the development of relevant criteria in Australian science curriculum materials 195

Graham W. Detrick
The performance of 9 to 12 year old children on primary, secondary and multiplicative classification tasks: Implications for teaching and curriculum design 205

Contributors 213

This volume of Australian Science Education in 1980 ranges from papers ranging from philosophy into the effects of educational innovations in primary school educational policies.

Most of the papers in this volume of Australian Science Education in 1980 can be tackled either as individual papers or as parts of sessions of science educators.

The co-ordinator of whether Rod Fawns paper may need to be rethought is encouraging this behaviour, the

By delightful flavour of knowledge and a sense of America. On A.S.E.R.A. Conf aspect of science Conferences and inquiry into problems and issues reported here it is encouraging to ways in which they may be narrowed, but (Owen’s paper), re

Colin Power
General Editor
PREFACE

This volume contains the papers presented at the 9th Annual Conference of the Australian Science Education Research Association held at Mount Gravatt College of Advanced Education in May 1978. The papers reflect the diversity of interests of A.S.E.R.A. members; ranging from philosophical analysis of the language of science teaching to experimental research into the effects of different laboratory skill development strategies; from cognitive development in primary school children to analyses of teaching in University microbiology classes; from evaluations of facilities and curricula to the rough theatre of the science classroom.

Most of the studies reported fall within the psychometric paradigm and have utilised its methodologies. One or two have utilised other (e.g. philosophical) methods of analysis; and in a few papers, there are indications of a willingness to consider methodological alternatives, to tackle hitherto untouched problems and to adopt fresh perspectives. As a consequence, at least three or four of the papers presented represent a challenge not only to the research traditions of science education, but also to science teachers, curriculum developers, and teacher educators.

The continuing interest of members in problems relating to the nature of science and science education is evident in the first two papers. Science education research workers might well like to apply Barry Newman's classification to their efforts. Might the research be described as less than science, or even worse as unknown and unimportant science? If so, what might be done? Jim Butler's paper could not be described as unimportant, but it does raise the question of whether school science is a limited or unsuccessful science if not a misleading one. Rod Fawns' paper is undoubtedly unique but it also suggests that we, as teachers and researchers, may need to be more adventurous in our attempts to teach and to study science teaching. Several papers deal with the gap between the objectives of promoting inquiry, psychomotor skills, and affective development, and the reality. Collectively, these papers yield fresh insights and outline some promising tools which might be useful in studying the discrepancies identified. It is encouraging to see that more often than not, a careful study is being made of the patterns of behaviour, the nature of the learning environment, or the curriculum materials used.

Throughout the Conference papers the Australian bias persists, albeit spiced with the delightful flavour of South East Asian analyses of inquiry, a pragmatic look at environmental knowledge and attitudes in the United Kingdom and at psychomotor skills in the United States of America. Once again we find that certain perspectives are missing. For instance in the A.S.E.R.A. Conferences held to date, no paper has undertaken an historical analyses of any aspect of science teaching in Australia. Relatively few science teachers attend A.S.E.R.A. Conferences and rarely, if ever, have science teachers dared to report on their attempts to inquire into problems faced by them. At several A.S.E.R.A. Conferences, workshops (not reported here) have looked at the problems of dissemination and suggestions have been made as to ways in which the apparent gulf between science education research and practice might be narrowed. But, while we have studies of the diffusion of curriculum innovations (cf. John Owen's paper), research on the dissemination of research is all too rare.

Colin Power
General Editor

Cam McRobbie
Editor
THE CONTRIBUTORS

JOHN AINLEY
Australian Council for Educational Research, Melbourne.

WARREN BEASLEY
Faculty of Education, University of Queensland.

JIM BUTLER
Faculty of Education, University of Queensland.

JOHN DEKKERS
Faculty of Education, James Cook University of North Queensland.

GRAHAM DETTRICK
Gippsland Institute of Advanced Education, Victoria.

ROD FAWNS
Faculty of Education, University of Melbourne.

ADRIAN FORDHAM
Australian Council for Educational Research, Melbourne.

BARRY FRASER
Faculty of Education, Macquarie University.

ELIZABETH HEGARTY
School of Microbiology, The University of New South Wales.

RUSSELL LINKE
Educational Research Unit, The Flinders University of South Australia.

LAWRENCE LITTLE
Sydney Teachers’ College.

ARTHUR LUCAS
School of Education, The Flinders University of South Australia.

PADDY LYNCH
Faculty of Education, University of Tasmania.

ROB de M-MACLAY
Sydney Teachers’ College.

MAX MADDOCK
Faculty of Education, University of Newcastle.

DAVID MITCHELL
Kelvin Grove College of Advanced Education, Brisbane.

MILES NELSON
Churchlands College of Advanced Education, Western Australia.

BARRY NEWMAN
School of Education, The University of New South Wales.

JOHN OWEN
Melbourne State College, Victoria.

JOHN RENTOUL
School of Education, Macquarie University, New South Wales.
THE CONFERENCE ORGANISERS

To the many persons who assisted in organising and conducting this conference, my thanks. In particular the advice and assistance of the following were invaluable:

Cec Burr
Jim Butler
Ken Kretschner
Herbie Martin
David Mitchell
Jim Richmond

Mount Gravatt College of Advanced Education
University of Queensland
Coorparoo High School
Mount Gravatt College of Advanced Education
Kelvin Grove College of Advanced Education
Mount Gravatt College of Advanced Education

together with Mrs H. Martyn for her secretarial assistance and the technical staff of Mount Gravatt College of Advanced Education.

Cam McRobbie
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 9

EDITED BY: Denis Goodrum, Churchlands C.A.E.

GENERAL EDITOR: Colin Power, Flinders University

EDITORIAL BOARD: John Dekkers, Western Australian Institute of Technology
Arthur Lucas, Flinders University
Max Maddock, University of Newcastle
Michael Macfarlane, Darling Downs College of Advanced Education
Dick White, Monash University

BUSINESS MANAGER: Jim Butler, University of Queensland

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Colin Power, School of Education, Flinders University, Bedford Park, 5042, Australia.

Library Subscriptions to the Business Manager, Dr. J. Butler, Education Department, University of Queensland, St. Lucia, 4067, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>(v)</td>
</tr>
<tr>
<td>Peter J. Pensham</td>
<td>Science Education Research: Present and Future</td>
<td>1</td>
</tr>
<tr>
<td>Colin Power</td>
<td>The Republic of Science Education Research</td>
<td>5</td>
</tr>
<tr>
<td>Leonie Rennie</td>
<td>Bloom’s Theory of School Learning – A summary of the Implications for Science Education</td>
<td>13</td>
</tr>
<tr>
<td>R. Lewis and J.P. Reeves</td>
<td>Teaching Behaviour and Science Achievement</td>
<td>15</td>
</tr>
<tr>
<td>Alan R. Barton</td>
<td>A New Statistical Procedure for the Analysis of Hierarchy Validation Data</td>
<td>23</td>
</tr>
<tr>
<td>J.R. Northfield and L.C. Ingvarson</td>
<td>School-Based Developmental Research – From Ideas to Implementation</td>
<td>33</td>
</tr>
<tr>
<td>Peter J. Pensham</td>
<td>The Forest and the Woodchips – Are They Alternative Paradigms for Studying the Tree of Science Education?</td>
<td>43</td>
</tr>
<tr>
<td>H.R. Thorley, D.J. Boud, J.C. Dunn and T. Kennedy</td>
<td>The Aims of Science Courses</td>
<td>53</td>
</tr>
<tr>
<td>W.D. Ponniah</td>
<td>Students’ Attitudes to an Inner-City Environment</td>
<td>55</td>
</tr>
<tr>
<td>M.N. Maddock</td>
<td>The Relationship Between Attitudes and School Achievement: A Further Exploration</td>
<td>69</td>
</tr>
<tr>
<td>Colin Power</td>
<td>Science Achievement and Attitudes at Primary and Secondary Interface</td>
<td>75</td>
</tr>
<tr>
<td>Roger J. Osborne and John K. Gilbert</td>
<td>Investigating Student Understanding of Basic Physics Concepts Using an Interview-About-Instances Technique</td>
<td>85</td>
</tr>
<tr>
<td>N.C. Kellett</td>
<td>Working Memory Capacity and Learning Difficulties</td>
<td>95</td>
</tr>
</tbody>
</table>
Contents — contd.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.D. Linke and M.I. Venz</td>
<td>Misconceptions in Physical Science Among Non-Science Background Students: II</td>
<td>103</td>
</tr>
<tr>
<td>Darrell L. Fisher</td>
<td>The Impact of the Inclusion of ASEAP Materials on Some Cognitive Outcomes in Different Types of Tasmanian Schools</td>
<td>111</td>
</tr>
<tr>
<td>Rod Fawns</td>
<td>The Treatment of Aspects of Change Associated with the Concept of Evolution in the Australian Science Education Project — The Development of an Argument Through Four Approaches to Content Analysis</td>
<td>119</td>
</tr>
<tr>
<td>P.P. Lynch</td>
<td>Scientific Language and the Tasmanian High School Child. The Tendency to Generalise</td>
<td>123</td>
</tr>
<tr>
<td>Gaye Rosen</td>
<td>The Effectiveness of the Use of Games as a Revision Technique in Junior High School Science</td>
<td>133</td>
</tr>
<tr>
<td>Abdul G. Khan</td>
<td>Audio-Tutorial Approach — A Multi-Media or an Individualized Method of Instruction?</td>
<td>144</td>
</tr>
<tr>
<td>John Dekkers and Anne Dowd</td>
<td>Science Classroom Practices and Design Characteristics of Instructional Materials: A Case Study</td>
<td>149</td>
</tr>
<tr>
<td>M.J. Sullivan and C.J. Dawson</td>
<td>Critical Thinking Ability in Science — What Can be Measured?</td>
<td>159</td>
</tr>
<tr>
<td>Denis Goodrum</td>
<td>Creative and Logical Thinking in Adolescents</td>
<td>177</td>
</tr>
<tr>
<td>Contributors</td>
<td></td>
<td>185</td>
</tr>
</tbody>
</table>
This publication contains some of the papers and summaries of papers presented at the tenth conference of the Australian Science Education Research Association.

Since this conference marked the end of the organisation's first decade, it seemed appropriate to reflect on the problems that confronted science education researchers in this country as they contemplate the directions of where we should be going. To this end, Professors Fensham and Power were invited to present papers on these issues. These two papers head the list of enclosed papers and were the basis of a fruitful discussion session.

Although the discussions traversed many aspects of science education research, two common threads emerged. The first aspect concerned the problem of communication between the researcher and the teacher. There was concern that research findings were not filtering through to the classroom. The other area involved the kind of science education research being carried out. The need was expressed to research areas which were perceived as being more relevant to the classroom. Perhaps this is the challenge of the eighties: to initiate more useful classroom oriented research as well as to more effectively inform teachers of it.

The remaining papers cover a wide range of interests and areas. The initial group of papers are involved with more general aspects of science education. There are then three papers on different aspects of attitudes followed by papers on learning difficulties with science concepts. Next there are a number of papers examining curriculum issues and learning strategies. The final papers discuss research about thinking processes.
THE CONTRIBUTORS

ALAN R. BARTON (DR) Adelaide College of the Arts and Education
D.J. BOUD (DR) Physics Department, Western Australian Institute of Technology
CHRIS DAWSON (DR) University of Adelaide
JOHN DEKKERS (DR) Science Education Centre, Western Australian Institute of Technology
ANNE DOWD James Cook University of Northern Queensland
J.G. DUNN (DR) Western Australian Institute of Technology
ROD FAWNS Faculty of Education, Melbourne University
PETER FENSHAM (PROF) Faculty of Education, Monash University
DANIELLE L. FISHER Tasmanian College of Advanced Education
JOHN GILBERT Institute of Education Technology, University of Surrey
DENNIS GOODHUM (DR) Churchlands College of Advanced Education
LAWRENCE INVARSON Faculty of Education, Monash University
J.P. KEEVES (DR.) Australian Council of Educational Research
NATALIE KELLETT (DR) H.E.A.R.U., Monash University
T. KENNEDY Western Australian Institute of Technology
ABDUL KHAN (DR) Goulburn College of Advanced Education
RAMON LEWIS Latrobe University
RUSSELL LINKE (DR) School of Medicine, Flinders University
PADDY LINCH University of Tasmania
MAX MADDICK (DR) Faculty of Education, The University of Newcastle
JEFF NORTHFIELD Faculty of Education, Monash University
ROGER OSBORNE (DR) Department of Physics, University of Waikato
WIM PONNIAH (DR) Faculty of Education, Monash University
COLIN POWER (PROF) School of Education, Flinders University
LEONIE RENNIE Department of Education, University of W.A.
GAIE ROSEN University of N.S.W.
J. ROWELL Department of Education, University of Adelaide
MICHAEL SULLIVAN

NOEL R. THORLEY

M. VENZ

South Australian Department of Education

Western Australian Institute of Technology

Flinders University

CONFEREENCE COMMITTEE

MILES A. NELSON (Convener)

MUREDACH DYLAN

WILLIAM FOULDS

PAT GARNETT

ROGER HACKER

GRAHAM PIKE

RENA TO A. SCHIBECI

Churchlands C.A.E.

Western Australian Institute of Technology

Claremont C.A.E.

Nedlands C.A.E.

University of Western Australia

Mt. Lawley C.A.E.

Murdoch University
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 10

May, 1980

EDITED BY: Colin Power, Flinders University

EDITORIAL BOARD: John Dekkers, Western Australian Institute of Technology.
Denis Goodrum, Churchlands C.A.E.
Marjory Martin, Toorak State College.
Paddy Lynch, University of Tasmania.
Max Maddock, University of Newcastle.

BUSINESS MANAGER: Jim Butler, University of Queensland.

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Colin Power, School of Education, Flinders University, Bedford Park, 5042, Australia.

Library Subscriptions to the Business Manager, Dr. J. Butler, Education Department, University of Queensland, St. Lucia, 4067, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Karplus</td>
<td>Teaching for the Development of Reasoning</td>
<td>1</td>
</tr>
<tr>
<td>Roger Osborne</td>
<td>Some Aspects of the Students' View of the World</td>
<td>11</td>
</tr>
<tr>
<td>Ross Tasker</td>
<td>Some Aspects of the Students' View of Doing Science</td>
<td>19</td>
</tr>
<tr>
<td>Peter J. Fensham</td>
<td>A Research Base for New Objectives of Science Teaching</td>
<td>23</td>
</tr>
<tr>
<td>R.P. Gunstone</td>
<td>A Matter of Gravity</td>
<td>35</td>
</tr>
<tr>
<td>Richard F. Gunstone</td>
<td>Word Association and the Description of Cognitive Structure</td>
<td>45</td>
</tr>
<tr>
<td>J. Deacon and R. Bamford</td>
<td>Problem Solving Applied to a Direct Current Circuit Problem in a Physics Examination</td>
<td>55</td>
</tr>
<tr>
<td>David J. Symington</td>
<td>Primary School Teachers' Knowledge of Science and its Effect on Choice Between Alternative Verbal Behaviours</td>
<td>69</td>
</tr>
<tr>
<td>Colin F. Gauld</td>
<td>Subject-Oriented Test Construction</td>
<td>77</td>
</tr>
<tr>
<td>A.J.D. Blake and D.M. Hill</td>
<td>The Understanding in Science Test as a Measure of Piagetian Level of Intellectual Development</td>
<td>83</td>
</tr>
<tr>
<td>J.E. Butler, W.F. Beasley, D. Buckley and L. Endean</td>
<td>Pupil Task Involvement in Secondary Science Classrooms</td>
<td>93</td>
</tr>
<tr>
<td>Adrian Fordham</td>
<td>Student Intrinsic Motivation, Science Teaching Practices and Student Learning</td>
<td>107</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>R.G. Hacker and J.N. Miles</td>
<td>A Study of Science Teaching Processes and their Implications for Science Education Policy Formation</td>
<td>119</td>
</tr>
<tr>
<td>John Atuley</td>
<td>Background Aptitude and School Factors Related to Achievement in Year 12 Science Subjects</td>
<td>129</td>
</tr>
<tr>
<td>Anne Eggins</td>
<td>The Interaction Between Structure in Learning Materials and the Personality of Learners</td>
<td>139</td>
</tr>
<tr>
<td>Abdul G. Khan</td>
<td>Inter-relationships of Aptitude and Cognitive Achievement Measures in an Audio-Tutorial Introductory College Biology Course</td>
<td>147</td>
</tr>
<tr>
<td>R.A. Schibeci</td>
<td>Science Teachers and Science Related Attitudes</td>
<td>159</td>
</tr>
</tbody>
</table>
This publication contains most of the papers and summaries of papers presented at the eleventh conference of the Australian Science Education Research Association. The conference was held at Toorak State College, Melbourne, Victoria on 15-17th May, 1980.

In the first set of papers, the strong influence of contemporary movements in cognitive psychology is evident. Robert Karplus set the scene by arguing that cognitive development ought not to be viewed in terms of rigidly defined stages like steps in a staircase. He proposes that we focus on reasoning patterns (identifiable and reproducible thought processes aimed at particular tasks) and their development through a learning cycle of exploration, concept introduction and application. Considerable attention is given to the concepts, frameworks and reasoning patterns which students bring with them to the learning situation in the papers which follow. Osborne and Tennyson describe the current work being done in the Learning in Science Project in their in-depth interview studies of children’s science; Fenelon argues that research workers and curriculum developers need to take seriously the developed sets of ideas of students in attempting to explain learning difficulties and to frame science teaching objectives; Gunstone and White probe the understandings of first year Physics students revealing some of the misconceptions which derive from the way in which Physics is currently taught; Doonan and Bamford examine the types of errors made by students in examination Physics problems and speculate on the problem solving strategies used; Dekkers and Johnstone revive the notions of cognitive preference and cognitive style and set out to show how these guide programme development; Symington suggests that the background knowledge of teachers is important and influences the ways in which they set out to assist pupils to identify problems. The questioning of conventional procedures and frameworks which is implicit in many of the above papers proceeds in the paper by Gauld and by Blake and Hill. In a thought provoking paper, Gauld questions the mechanical, teacher-oriented procedures for developing and validating achievement tests, arguing for more subject-oriented procedures utilizing interviews to supplement psychometric analyses of student responses. Blake and Hill’s study of the validity and reliability of the pencil-and-paper Understanding in Science test as an alternative to the clinical interviews for assessing intellectual development point in a similar direction. In essence, the papers collectively suggest that we need to study the framework of ideas and reasoning processes of students and teachers using the administration of tasks and clinical, probing interviews and to take the results seriously in designing science courses and developing testing procedures.

Most of the remaining papers fall into two groups: those concerned primarily with studying science teaching practices (Butler et al; Fordham; Hacket) and those concerned with the relationship among student cognitive and personality measures, characteristics of schools or curriculum materials and achievement (Ainsley; Eggins; Rham). Butler and a team of researchers at the University of Queensland have initiated a major project which will provide us with a fascinating account of pupil task involvement and teacher management in science classrooms; Fordham’s
study of teaching practices relevant to the arousal of curiosity will be of particular interest to curriculum developers and classroom teachers; Hacker's study provides a good deal of scope for speculating about differences in science teaching practices in Australia, Canada and the United Kingdom.

The final papers in this volume deal with a programme evaluation project (Hirst et al.) and a detailed study of the attitudes to science and scientific attitudes of teachers, the methods used to assess these and the contribution made by science to the curriculum (Schibeci).

Colin Power
Editor
THE CONTRIBUTORS

BAMFORD, R. Western Australian Institute of Technology, Perth.
BEASLEY, W.F. University of Queensland, Brisbane.
BLAuree, A.J.D. Riverina CAE, Wagga Wagga.
BUCKLEY, D. University of Queensland, Brisbane.
BUTLER, J.E. University of Queensland, Brisbane.
DEACON, J. Western Australian Institute of Technology, Perth.
DEKKERS, J. Western Australian Institute of Technology, Perth.
EGGINS, A. Kelvin Grove, CAE, Brisbane.
ENDEAN, L. University of Queensland, St. Lucia.
FENSHAM, P. Monash University, Melbourne.
FORDHAM, A. Australian Council for Educational Research.
GAULD, C.F. University of New South Wales, Sydney.
GUNSTONE, R. Monash University, Melbourne.
HACKER, R. University of Western Australia, Perth.
HILL, D. Riverina CAE, Wagga Wagga.
HIRST, R. Melbourne State College, Melbourne.
JOHNSTON, T. Sir Charles Gairdner Hospital, Perth.
KARPLUS, R. University of California, Berkeley, USA.
MALCOLM, C. Melbourne State College, Melbourne.
MILES, J.N. University of Western Australia, Perth.
OSBORNE, R. University of Waikato, Hamilton, New Zealand.
OWEN, J. Melbourne State College, Melbourne.
SCHIBECI, R.A. Murdoch University, Perth.
SYMINGTON, D.J. Toorak State College, Victoria.
TASKER, R. University of Waikato, Hamilton, New Zealand.

WHITE, R.T. Monash University, Clayton.
RESEARCH
IN
SCIENCE EDUCATION

VOLUME 11

Proceedings of the Twelfth Annual Conference of the Australian Science Education Research Association, University of Tasmania, Hobart.

May, 1981

EDITED BY: Laurie Rattray-Wood, Deakin University
 Peter Ferguson, Deakin University

EDITORIAL BOARD: Bill Butts, Macquarie University
 Paul Gardner, Monash University
 Max Maddock, University of Newcastle
 Marjory Martin, Toorak State College
 Colin Power, Flinders University

BUSINESS MANAGER: Jim Butler, University of Queensland

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Mr Laurie Rattray-Wood or Mr Peter Ferguson, School of Education, Deakin University, Geelong, Victoria, 3217, Australia.

Library subscriptions to the Business Manager, Dr J. Butler, Education Department, University of Queensland, St. Lucia, 4067, Queensland, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don Margetson</td>
<td>Science Education and Philosophy of Science</td>
<td>1</td>
</tr>
<tr>
<td>Rod Fawns</td>
<td>Science Teacher Participation in Reviews of Syllabi - More Than an Organizational Dilemma</td>
<td>8</td>
</tr>
<tr>
<td>Ken Appleton</td>
<td>Some Effects of Practice Teaching on Students' Attitudes to Teaching Science</td>
<td>17</td>
</tr>
<tr>
<td>Robert Yager, Norris Harms and Vincent Lunetta</td>
<td>Science Teaching in the United States: A Prospective Versus Retrospective Synthesis</td>
<td>26</td>
</tr>
<tr>
<td>Keith Skamp and Colin Power</td>
<td>Primary Science, Inquiry and Classroom Demands: Pre-service Teachers Responses and Perceptions</td>
<td>34</td>
</tr>
<tr>
<td>David Symington, Keith Boundy, Tom Radford and John Walton</td>
<td>Children's Drawings of Natural Phenomena</td>
<td>44</td>
</tr>
<tr>
<td>Rodger Osborne, Peter Freyberg, Ross Tasker and Keith Stead</td>
<td>Description, Analysis and Action: Three Phases of a Research Project</td>
<td>52</td>
</tr>
<tr>
<td>John Dekkers, Alan McLaren and Marvin Druger</td>
<td>Unsolved Problem Areas in Biology: Some Student and Teacher Views</td>
<td>59</td>
</tr>
<tr>
<td>Beno B. Boeha</td>
<td>Learning of Physics at the Papua New Guinea University of Technology</td>
<td>66</td>
</tr>
<tr>
<td>Ron Cullen</td>
<td>Implementation of a Personalized System of Instruction in Physical Science and Comparison of Attitude and Achievement with Conventional Classes</td>
<td>72</td>
</tr>
<tr>
<td>Cyril Quinlan</td>
<td>Project Physics in N.S.W.</td>
<td>78</td>
</tr>
<tr>
<td>Elaine P. Atkinson and Richard T. White</td>
<td>Influence of Practical Work on Test Performance</td>
<td>87</td>
</tr>
<tr>
<td>P. P. Lynch and V. L. Ndjetabura</td>
<td>Student Perceptions of the Influences of Practical Work in Science at High School and Matriculation Levels in Tasmanian Schools</td>
<td>94</td>
</tr>
</tbody>
</table>
Margaret Brumby
The Use of Problem-Solving in Meaningful Learning in Biology
103

John R. Baird and Richard T. White
A Case Study Analysis of Differences in Learning Processes
and Outcomes in Biology
111

Peter J. Fensham, Jan Garrard and Leo West
The Use of Cognitive Mapping in Teaching and
Learning Strategies
121

Bill Butts
Learning a Procedural Task
130

Howard Fearn-Wannan
Toward a Theory of Learning in Tertiary Science Education
141

Margaret Brumby
Learning or Cognitive Styles - What are They?
150

John Edwards and Gloria Dall'Alba
Development of a Scale of Cognitive Demand for Analysis
of Printed Secondary Science Materials
158

P. L. Gardner, E. E. Gray and S. M. Taylor
Teacher Transmission-Interpretation and Students'
Attitudes to Science
171

M. N. Maddock
Formal Schooling and the Attitudes of Papua New Guinea
Students 1972-1980
180

C. J. Dawson and N. Bennett
What Do They Say They Want? Year 7 Students'
Preferences in Science
193

Paddy Lynch and Andrew Davey
University Students' Expectations of Geography, Chemistry
and Biology Courses with Special Reference to
Students' Perception of Geography
202

The Contributors
209
This publication contains most of the papers and summaries of papers presented at the twelfth annual conference of the Australian Science Education Research Association. The conference was held at The University of Tasmania, Hobart, on 14-16 May, 1981.

As is usual, no theme was nominated for the conference and a wide distribution of topics, approaches and levels was represented. The papers as they are arranged proceed from the field of endeavour which concerns itself with the education and practices of science teachers. A beginning is made when a viewpoint is provided to support a hypothesis suggesting that a study of philosophy of science by teachers and scientists may result in improved articulation of science. There follows a group of papers that place emphasis upon teaching practices as these relate to curriculum and particular skills. These papers cover the teaching of science at all levels including that of primary school children. To some extent the perspective then changes to one that is on considerations of curriculum including student practical work, and the relationship with teaching, learning and attitudes can be observed. The interesting development in cognitive studies of learning as related to science education, teaching strategies and curriculum is well represented. Finally Volume II concludes with further studies on attitudes and expectations as these apply firstly to an aspect of teaching style and then to activities, topic and subject areas.

Laurie Rattray-Wood
Editor
THE CONTRIBUTORS

APPLETON, KEN Capricornia Institute of Advanced Education, Rockhampton.
ATKINSON, ELAINE Burwood State College, Melbourne.
BAIRD, JOHN Melbourne State College, Melbourne.
BENNETT, N. University of Adelaide, Adelaide.
BOEHA, BENO Papua New Guinea University of Technology, P.N.G.
BOUNDY, KEITH Toorak State College, Melbourne.
BRUMBY, MARGARET Monash University, Melbourne.
BUTLER, JIM University of Queensland, St. Lucia.
BUTTS, BILL Macquarie University, Sydney.
CULLEN, RON Mt. Gravatt College of Advanced Education, Brisbane.
DALL'ALBA, GLORIA James Cook University, Townsville.
DAVEY, ANDREW University of Tasmania, Hobart.
DAWSON, CHRIS University of Adelaide, Adelaide.
DEKKERS, JOHN Western Australian Institute of Technology, Perth.
DRUGER, MARVIN Western Australian Institute of Technology, Perth.
EDWARDS, JOHN James Cook University, Townsville.
FARNS, ROD University of Melbourne, Melbourne.
FEARN-WANNAN, HOWARD Royal Melbourne Institute of Technology, Melbourne.
FENSHAM, PETER Monash University, Melbourne.
FREYBERG, PETER University of Waikato, Hamilton, New Zealand.
GARDNER, PAUL Monash University, Melbourne.
GARRARD, JAN Monash University, Melbourne.
GRAY, E.E. Monash University, Melbourne.
HARMS, NORRIS University of Colorado, United States of America.
LUNETTA, VINCENT University of Iowa, United States of America.
LYNCH, PADDY University of Tasmania, Hobart.
MADDOCK, MAX University of Newcastle, Newcastle.
MARGETSON, DON Griffith University, Brisbane.
McLAREN, ALAN Western Australian Institute of Technology, Perth.
NYETABURA, VEDDY University of Tasmania, Hobart.
OSBORNE, ROGER University of Waikato, Hamilton, New Zealand.
POWER, COLIN Flinders University, Adelaide.
QUINLAN, CYRIL Polding College, Sydney.
RADFORD, TOM Toorak State College, Melbourne.
SKAMP, KEITH Flinders University, Adelaide.
STEAD, KEITH University of Waikato, Hamilton, New Zealand.
SYMMINGTON, DAVID Toorak State College, Melbourne.
TAYLOR, S. M. Monash University, Melbourne.
TASKER, ROSS University of Waikato, Hamilton, New Zealand.
WALTON, JOHN Toorak State College, Melbourne.
WEST, LEO Monash University, Melbourne.
WHITE, RICHARD Monash University, Melbourne.
YAGER, ROBERT University of Iowa, United States of America.
RESEARCH IN SCIENCE EDUCATION

VOLUME 12

A selection of papers presented at the Thirteenth Annual Conference of the Australian Science Education Research Association, Macquarie University, Sydney.

May, 1982

EDITED BY: Laurie Rattray-Wood, Deakin University
Peter Ferguson, Deakin University

EDITORIAL BOARD: Bill Butts, Macquarie University
Chris Dawson, University of Adelaide
Paul Gardner, Monash University
Roger Osborne, University of Waikato
Colin Power, Flinders University
Kenneth Tobin, Western Australian College of Advanced Education

BUSINESS MANAGER: Richard White, Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard Tisher, Faculty of Education, Monash University, Wellington Road, Clayton, Victoria, 3168, Australia.

Subscriptions to the Business Manager, Professor R.T. White, Faculty of Education, Monash University, Wellington Road, Clayton, Victoria, 3168, Australia.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>(v)</td>
</tr>
<tr>
<td>Colin Power</td>
<td></td>
</tr>
<tr>
<td>Science Education, Cognitive ...</td>
<td>1</td>
</tr>
<tr>
<td>Developmental Research and Theory in the U.K.</td>
<td></td>
</tr>
<tr>
<td>Peter J. Fensham, Jan Garrard and Leo West</td>
<td></td>
</tr>
<tr>
<td>A Comparative Critique of Several Methods of Collecting Data for Cognitive Mapping</td>
<td>9</td>
</tr>
<tr>
<td>Patrick J. Cronin, John Dekkers and Jeffrey G. Dunn</td>
<td></td>
</tr>
<tr>
<td>A Procedure for Using and Evaluating Concept Maps</td>
<td>17</td>
</tr>
<tr>
<td>Roger Osborne</td>
<td></td>
</tr>
<tr>
<td>Conceptual Change - For Pupils and Teachers</td>
<td>25</td>
</tr>
<tr>
<td>John Edwards and Perc Marland</td>
<td></td>
</tr>
<tr>
<td>Student Thinking in a Secondary Biology Classroom</td>
<td>32</td>
</tr>
<tr>
<td>Kenneth Tobin</td>
<td></td>
</tr>
<tr>
<td>Patterns of Reasoning: Probability</td>
<td>42</td>
</tr>
<tr>
<td>Daphne M. Buckley</td>
<td></td>
</tr>
<tr>
<td>Teacher Language Complexity and Pupil Task Involvement</td>
<td>50</td>
</tr>
<tr>
<td>Janice M. Wilson and J.E. Butler</td>
<td></td>
</tr>
<tr>
<td>Nonverbal Behaviour of Classroom Teachers and its Influence on Pupil Task-Involvement</td>
<td>55</td>
</tr>
<tr>
<td>David Symington</td>
<td></td>
</tr>
<tr>
<td>Lack of Background in Science: Is It Likely to Always Adversely Affect ...</td>
<td>64</td>
</tr>
<tr>
<td>of Primary Teachers in Science Lessons?</td>
<td></td>
</tr>
<tr>
<td>Audrey B. Champagne, Richard F. Gunstone and Leopold E. Klopfer</td>
<td></td>
</tr>
<tr>
<td>A Perspective on the Differences Between Expert and Novice Performance in Solving Physics Problems</td>
<td>71</td>
</tr>
<tr>
<td>Mark W. Hackling and David F. Tregast</td>
<td></td>
</tr>
<tr>
<td>What Lower Secondary Students Should Understand About the Mechanisms of Inheritance and What They Do Understand Following Instruction</td>
<td>78</td>
</tr>
<tr>
<td>Judith F. Kinnear, Marjory-Dore Martin and Joseph D. Novak</td>
<td></td>
</tr>
<tr>
<td>Computer Simulation and Concept Development in Students of Genetics</td>
<td>89</td>
</tr>
<tr>
<td>Peter T. White</td>
<td></td>
</tr>
<tr>
<td>Science Related Attitudes amongst Victorian Catholic Primary School Teachers</td>
<td>97</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Peter Codd</td>
<td>The Use of Commonality Analysis in the Analysis of Teachers' Attitudes and Practice Towards Primary Science</td>
</tr>
<tr>
<td>Margaret Brumby</td>
<td>Medical Students' Perception of Science</td>
</tr>
<tr>
<td>C.F. Gauld</td>
<td>A Study of the Scientific Attitudes of Science Educators who Study Scientific Attitudes</td>
</tr>
<tr>
<td>M.N. Maddock and K. McDonald</td>
<td>Attitude to Conservation of the Environment and Awareness of Environmental Issues</td>
</tr>
<tr>
<td>L. Endean</td>
<td>Pupils' Prescriptions for Good Science Teachers</td>
</tr>
<tr>
<td>M.P. McFarlane and B. Cameron</td>
<td>Matriculation Students' Perceptions of the Similarity of Science Courses Offered by Tertiary Institutions in Queensland</td>
</tr>
<tr>
<td>Rod A. Pawns</td>
<td>What or Where is the 'Nature' of Science Teaching?</td>
</tr>
</tbody>
</table>
The thirteenth annual conference of the Australian Science Education Research Association was held at Macquarie University, Sydney, on 20-22 May, 1982. This publication contains a selection of the papers presented at the conference.

The papers begin with an overview of trends in science education, cognitive developmental research and theory in the United Kingdom. Such a beginning provides a perfect backdrop for the Australian research activities as reported in the papers submitted for publication.

The first group of papers that follows the introductory article is about some of the developments in studies of thinking and reasoning, including work on concept mapping and conceptual change. Closely associated with this group is a collection of papers that relates, broadly speaking, to teaching and learning. It includes studies where the focus is on teachers, students or both and relates to classroom communication both verbal and nonverbal, the effect of teacher background on performance, differences in problem solving performances, effects of instruction on understanding and computer simulation as a means to aid concept development. The following group is representative of the wide variety of work that is proceeding on attitudes and perceptions. The final paper uses an analysis of earlier science text books to identify a trend away from seeing 'nature' as a symbol of permanence, such that observed complexities and changes in the meaning of the symbol can be more readily accepted. Recognition of the problematics in the dominant stance normally adopted by science educators should lead to a questioning of the separation of 'man' from 'nature'.

Laurie Rattray-Wood
Peter Ferguson
THE CONTRIBUTORS

BRUMBY, MARGARET Monash University
BUCKLEY, DAPHNE University of Queensland
BUTLER, J.E. University of Queensland
CAMERON, H. Darling Downs Institute of Advanced Education
CHAMPAGNE, AUDREY University of Pittsburgh, U.S.A.
CODD, PETER Catholic College of Education, Sydney
CRONIN, PATRICK Christian Brothers College, Perth
DEKKERS, JOHN Western Australian Institute of Technology
DUNN, JEFFREY Western Australian Institute of Technology
EDWARDS, JOHN James Cook University
ENDEAN, L. University of Queensland
FAUNS, ROD University of Melbourne
FENSHAM, PETER Monash University
GARRARD, JAN Monash University
GAULD, C.F. University of New South Wales
GUNSTONE, RICHARD Monash University
HACKLING, MARK Western Australian College of Advanced Education
KINNEAR, JUDITH Melbourne State College
KLOPPER, LEOPOLD University of Pittsburgh, U.S.A.
MCDONALD, K. Newcastle College of Advanced Education
MCPARLANE, MICHAEL Darling Downs Institute of Advanced Education
MADDOCK, M.N. University of Newcastle
MARLAND, PERC James Cook University
MARTIN, MARJORY-DORE Victoria College at Toorak
NOVAK, JOSEPH Cornell University, U.S.A.
OSBORNE, ROGER University of Waikato, N.Z.
POWER, COLIN Flinders University
SYMINGTON, DAVID

TOBIN, KENNETH

TREGUST, DAVID

WHITE, PETER

WILSON, JANICE

Victoria College at Toorak

Western Australian College of Advanced Education

Western Australian Institute of Technology

Institute of Catholic Education, Melbourne

University of Queensland
RESEARCH IN SCIENCE EDUCATION

Volume 13

Australian Science Education Research Association
RESEARCH
IN
SCIENCE EDUCATION

Volume 13

Selections of papers from the Fourteenth Annual Conference of the Australian Science Education Research Association, University of Waikato, New Zealand

May 1983

EDITED BY: Richard P. Tisher, Monash University

EDITORIAL BOARD: Effie Best, Education Department, South Australia
Bill Butts, Macquarie University
Margaret Brumby, Monash University
Paul Gardner, Monash University

BUSINESS MANAGER: Richard T. White, Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard P. Tisher, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.

Subscriptions and other orders to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard T. White</td>
<td>Research in Science Education: The Past Ten Years and the Next Five</td>
<td>1</td>
</tr>
<tr>
<td>Margaret Brumby</td>
<td>Concept Mapping: Structure or Process?</td>
<td>9</td>
</tr>
<tr>
<td>John Edwards and Kym Fraser</td>
<td>Concept Maps as Reflectors of Conceptual Understanding</td>
<td>19</td>
</tr>
<tr>
<td>Peter J. Fensham</td>
<td>Equations, Translations and Number Skills in Learning Chemical Stoichiometry</td>
<td>27</td>
</tr>
<tr>
<td>Colin Gauld and Kathryn Ryan</td>
<td>An Interview Study of Responses to Diagnostic, Multiple Choice, Physics Items</td>
<td>37</td>
</tr>
<tr>
<td>Brendan Schollum</td>
<td>Arrows in Science Diagrams: Help or Hindrance for Pupils?</td>
<td>45</td>
</tr>
<tr>
<td>John C. Happs</td>
<td>Using Socio-Cognitive Conflict to establish an Understanding of the Scientific Meaning of Rock</td>
<td>61</td>
</tr>
<tr>
<td>David J. Syrington and Richard T. White</td>
<td>Children’s Explanations of Natural Phenomena</td>
<td>73</td>
</tr>
<tr>
<td>Beverley Bell</td>
<td>Reading and the Learner of Science</td>
<td>83</td>
</tr>
<tr>
<td>Alister Jones</td>
<td>Investigation of Students' Understanding of Space, Velocity, and Acceleration</td>
<td>95</td>
</tr>
<tr>
<td>Ken Carr</td>
<td>Student Beliefs about Place Value and Decimals: Any Relevance for Science Education?</td>
<td>105</td>
</tr>
<tr>
<td>Ken Appleton</td>
<td>Beginning Student Teachers' Opinions about Teaching Primary Science</td>
<td>111</td>
</tr>
<tr>
<td>Warren Beasley</td>
<td>Teacher Behaviours and Student Task Involvement within Small Group and Individual Activity Settings</td>
<td>121</td>
</tr>
<tr>
<td>Bruce Jones and Bill Butts</td>
<td>Development of a Set of Scales to Measure Selected Scientific Attitudes</td>
<td>133</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Campbell J. McRobbie</td>
<td>Cognitive Preferences and Chemistry Achievement</td>
<td>141</td>
</tr>
<tr>
<td>Max Maddock</td>
<td>Science Teaching, Attitude to Health and Awareness of Health Issues</td>
<td>155</td>
</tr>
<tr>
<td>Keith Stead</td>
<td>Insights into Students' Outlooks on Science with Personal Constructs</td>
<td>163</td>
</tr>
<tr>
<td>John Hope and Michael Townsend</td>
<td>Student Teachers' Understanding of Science Concepts</td>
<td>177</td>
</tr>
<tr>
<td>Jeff Northfield and Richard Gunstone</td>
<td>Research on Alternative Frameworks: Implications for Science Teacher Education</td>
<td>185</td>
</tr>
<tr>
<td>Anthony Blake</td>
<td>Hands on Heads: Science and the Intellectually Immature High School Student</td>
<td>193</td>
</tr>
<tr>
<td>Rod Fawne</td>
<td>Background Mapping of Teachers' Cognate Perceptions of ASEP Units</td>
<td>203</td>
</tr>
<tr>
<td>Gloria Dall'Alba and John Edwards</td>
<td>Dimensions of Cognitive Demand</td>
<td>213</td>
</tr>
<tr>
<td>Fred Biddulph, Roger Osborne and Peter Freyberg</td>
<td>Investigatory Learning in Science at the Primary School Level</td>
<td>223</td>
</tr>
<tr>
<td>Wynne Harlen</td>
<td>Process Skills, Concepts, and National Assessment in Science</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>The Contributors</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Guidelines for authors</td>
<td>256</td>
</tr>
</tbody>
</table>
PREFACE

The majority of the papers presented at the annual conference of the Australian Science Education Research Association in May 1983 at University of Waikato, New Zealand, are contained in this volume of Research in Science Education. The issue begins with White's review of trends in the research over the past decade. He indicates that research has become more complex and more relevant in the last years as it has become based on more detailed models of relations between constructs. He also predicts an advance in the theory of learning in science within the next few years.

Quite a number of the subsequent papers deal with matters associated with explorations of cognitive structure. Brumby, for example, raises the question of whether concept mapping can be refined to demonstrate the processing of concepts and their linking relationships. She describes a written task in which pupils showed different patterns of working through a prepared concept map. Edwards and Fraser studied the concept mapping technique for its potential to provide an indicator of the level of understanding pupils bring to a learning situation, while Fawns compared concept maps for ASEP units drawn by experienced and student-teachers and used to make overt their views of the science syllabus. Dall'Alba and Edwards identify the dimensions of a cognitive task which determine how demanding it is and pupils' concepts of velocity and acceleration and rock are probed by Jones and Happs, respectively. Schollum adds another perspective to the research by showing that pupils often give meanings to arrows in scientific diagrams that are not intended, and Carr indicates that many 12 to 13 year-olds have incorrect ideas about numbers with decimal fractions with consequential effects in those science topics that require decimal fractions. Hope and Townsend and Northfield and Gunstone discuss some of the implications that research on student teachers' understanding of science concepts and children's frameworks for interpreting natural phenomena have for pre-service teacher education.

Teaching-strategy and curricular issues are addressed by Blake who proposes a 'hands on', science based, compensatory education program for intellectually immature early-leaving secondary school students and by Biddulph, Osborne, and Fryberg who describe the Learning in Science Project (Primary) at the University of Waikato. But compared to a decade ago there are fewer reports about teaching and interaction in science classrooms although in this issue Harlen uses her experience with the APU work in science to present some ideas about the relationships between process skills and concepts and Beasley studies the relationships between teacher
behaviour and pupil involvement in learning tasks. His findings suggest that teachers who wish to encourage small-group learning activities must nevertheless maintain their 'contact' with the whole class.

Several papers deal with issues associated with attitudes (Appleton; Jones & Butts; Maddock), others (Fensham; Gauld & Ryan) with learning difficulties and diagnosing misunderstandings; one with cognitive preferences and achievement in chemistry (McRobbie), one (Symington & White) with children's explanations of natural phenomena; and another (Bell) with processes used to learn from text. The remaining two papers in this issue introduce new techniques and themes into the research. stead reports on the use of the repertory grid technique to analyse pupils' reactions to science and Lynch and Strube report on Strube's refreshing historical analysis of science texts. once again this volume of Research in Science Education reveals the diversity of interests and of issues reported at the annual conference.

Richard P. Tisher
Editor
THE CONTRIBUTORS

APPLETON, Ken
BEASLEY, Warren
BELL, Beverley
BIDDULPH, Fred
BLAKE, Tony
BRUMBY, Margaret
BUTTS, Bill
CARR, Ken
DALL’ALBA, Gloria
EDWARDS, John
FAWNS, Rod
FENSHAM, Peter
FRASER, Kym
FREYBERG, Peter
GAULD, Colin
GUNSTONE, Richard
HAPPS, John
HARLEN, Wynne
HOPE, John
JONES, Alister
JONES, Bruce
LYNCH, Paddy
MADDOCK, Max
McROBBIE, Cam
NORTHFIELD, Jeff
OSBORNE, Roger
RYAN, Kathryn
SCHOLLOM, Brendan
STEAD, Keith
STURGE, Paul
SYMINGTON, David
TOWNSEND, Michael
WHITE, Richard

Capricornia Institute of Advanced Education, Rockhampton
University of Queensland, St Lucia
University of Waikato, Hamilton, New Zealand
University of Waikato, Hamilton, New Zealand
Riverina College of Advanced Education, Wagga Wagga
Monash University, Clayton
Macquarie University, North Ryde
Hamilton Teachers’ College, Hamilton, New Zealand
Monash University, Clayton
James Cook University, Townsville
University of Melbourne, Parkville
Monash University, Clayton
Townville Grammar School, Townsville
University of Waikato, Hamilton, New Zealand
University of New South Wales, Kensington
Monash University, Clayton
University of Waikato, Hamilton, New Zealand
Chelsea College, University of London, London
Secondary Teachers’ College, Auckland, New Zealand
Rosehill College, Papakura, New Zealand
Macquarie University, North Ryde
University of Tasmania, Hobart
University of Newcastle, Newcastle
Brisbane College of Advanced Education, Brisbane
Monash University, Clayton
University of Waikato, Hamilton, New Zealand
University of New South Wales, Kensington
Secondary Teachers’ College, Auckland, New Zealand
Secondary Teachers’ College, Auckland, New Zealand
University of Tasmania, Hobart
Victoria College, Toorak Campus, Malvern
University of Auckland, Auckland, New Zealand
Monash University, Clayton
GUIDELINES FOR AUTHORS OF PAPERS FOR RESEARCH IN SCIENCE EDUCATION

The following requirements have been established to facilitate editing, maintain standards in format and presentation and ensure that as many as possible of the conference papers can be published in KISE.

General lay-out and length

Setting out: The paper (including diagrams, tables, etc.) is to be typed on A4 sized paper, using double-spacing with wide margins - at least 2.5 cms on the left and 1.4 cms on the right. (Note that these margins are to be left on all pages, including those containing tables, diagrams, etc.)

Length: The total length of any one paper must not exceed twelve A4 double-spaced typed pages (this length includes text of the paper, reference lists, and all diagrams, figures, and tables).

Headings: Main headings (central and in capitals) and sub-headings (underlined and left-justified) should be used at reasonable intervals to aid in the reader's comprehension of the text. All pages should be numbered consecutively.

Footnotes and References

Footnotes: These should not be used although Reference Notes, e.g., Smith (Note 1) may be used to refer to unpublished material. The reference notes are to be collated at the end of the paper, e.g.,

Note 1, J.J. Smith, personal communication

References: References to journals and books should follow the criteria of the A.P.A., (see American Educational Research Journal, Vol.18, No.1, for a summary).

In the general text of the paper references should appear as Bernstein (1971) or Fisher and Fraser (1983), then these references should be placed in the reference list as,

*Please note the order of dates, volume number, publisher, place of publication for books and journals, use of upper- and lower-case letters.
RESEARCH IN SCIENCE EDUCATION

Volume 14

Selections of papers from the Fifteenth Annual Conference of the Australian Science Education Research Association, Monash University, Victoria.

May 1984

EDITED BY: Richard P. Tisher, Monash University

EDITORIAL BOARD: Effie Best, Education Department, South Australia
Tony Blake, Riverina College of Advanced Education
Margaret Brumby, Monash University
Paul Gardner, Monash University

BUSINESS MANAGER: Richard T. White, Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard P. Tisher, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.

Subscriptions and other orders to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>(v)</td>
</tr>
<tr>
<td>Jan Garrard and Margaret Brumby</td>
<td>1</td>
</tr>
<tr>
<td>Students’ Perceptions of Health</td>
<td></td>
</tr>
<tr>
<td>Max Maddock, Phil Moors, and Bill Warren</td>
<td>14</td>
</tr>
<tr>
<td>Attitude to Health and Knowledge of Health Issues in Nurses, High</td>
<td></td>
</tr>
<tr>
<td>School, and Primary School Pupils</td>
<td></td>
</tr>
<tr>
<td>Richard Tisher</td>
<td>22</td>
</tr>
<tr>
<td>What do High and Low Achievers Really Think of their Learning</td>
<td></td>
</tr>
<tr>
<td>Environments?</td>
<td></td>
</tr>
<tr>
<td>John Edwards and Perc Marland</td>
<td>29</td>
</tr>
<tr>
<td>A Comparison of Student Thinking in a Mathematics and a Science</td>
<td></td>
</tr>
<tr>
<td>Classroom</td>
<td></td>
</tr>
<tr>
<td>Dorothy Hayes and David Symington</td>
<td>39</td>
</tr>
<tr>
<td>The Satisfaction of Young Children with their Representational</td>
<td></td>
</tr>
<tr>
<td>Drawings of Natural Phenomena</td>
<td></td>
</tr>
<tr>
<td>Leo West and Leon Pines</td>
<td>47</td>
</tr>
<tr>
<td>An Interpretation of Research in ‘Conceptual Understanding’ within</td>
<td></td>
</tr>
<tr>
<td>a Sources-of-knowledge Framework</td>
<td></td>
</tr>
<tr>
<td>Gloria Dall’Alba and Jeff Northfield</td>
<td>57</td>
</tr>
<tr>
<td>Learning Strategies of One Student on a Range of Classroom Tasks</td>
<td></td>
</tr>
<tr>
<td>Chris Dawson and Jack Rowell</td>
<td>69</td>
</tr>
<tr>
<td>Displacement of Water: Weight or Volume? An Examination of Two</td>
<td></td>
</tr>
<tr>
<td>Conflict Based Teaching Strategies</td>
<td></td>
</tr>
<tr>
<td>Ian Mitchell and Richard Gunstone</td>
<td>78</td>
</tr>
<tr>
<td>Some Student Conceptions brought to the Study of Stoichiometry</td>
<td></td>
</tr>
<tr>
<td>Yael Friedler and Pinchas Tamir</td>
<td>89</td>
</tr>
<tr>
<td>Teaching and Learning in High School Biology Laboratory Classes in</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
</tr>
<tr>
<td>Malcolm Carr</td>
<td>97</td>
</tr>
<tr>
<td>Model Confusion in Chemistry</td>
<td></td>
</tr>
<tr>
<td>Brian Jones</td>
<td>104</td>
</tr>
<tr>
<td>How Solid is a Solid: Does it Matter?</td>
<td></td>
</tr>
<tr>
<td>Fred Biddulph and Roger Osborne</td>
<td>114</td>
</tr>
<tr>
<td>Pupils’ Ideas about Floating and Sinking</td>
<td></td>
</tr>
<tr>
<td>Author/Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Richard Gunstone</td>
<td>125</td>
</tr>
<tr>
<td>Circular Motions. Some Pre-Instruction. Alternative Frameworks</td>
<td></td>
</tr>
<tr>
<td>Paul Gardner</td>
<td>136</td>
</tr>
<tr>
<td>Circular Motions. Some Post-Instructional Alternative Frameworks</td>
<td></td>
</tr>
<tr>
<td>Peter Fensham</td>
<td>146</td>
</tr>
<tr>
<td>Selective Cueing among Chemistry Teachers</td>
<td></td>
</tr>
<tr>
<td>Ken Appleton</td>
<td>157</td>
</tr>
<tr>
<td>Student Teachers' Opinions - A Follow Up</td>
<td></td>
</tr>
<tr>
<td>John Happs</td>
<td>167</td>
</tr>
<tr>
<td>Harnessing Alternative Frameworks in Teacher Training: An Example from the Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>Rod Fawns</td>
<td>173</td>
</tr>
<tr>
<td>The Sources of Theoretical Principles for Science Method Programs. A New Setting Explored</td>
<td></td>
</tr>
<tr>
<td>Paul Strube</td>
<td>181</td>
</tr>
<tr>
<td>The Preface to the Science Textbook: An Historical Study of What the Authors Claim</td>
<td></td>
</tr>
<tr>
<td>Max Walsh, Paddy Lynch, Brian Jones, and Rex Kerrison</td>
<td>192</td>
</tr>
<tr>
<td>'Educating Rita': Is an Academic Science Course for Prospective Infant and Primary Teachers Appropriate?</td>
<td></td>
</tr>
<tr>
<td>Pinchas Tamir</td>
<td>198</td>
</tr>
<tr>
<td>Curriculum Development in Science by Master's and Ph.D. Students</td>
<td></td>
</tr>
<tr>
<td>Ken Appleton, Eleanor Hawe, Fred Biddulph, and Roger Osborne</td>
<td>206</td>
</tr>
<tr>
<td>So You Think the Guide Materials Look Good?</td>
<td></td>
</tr>
<tr>
<td>Sunee Klainin</td>
<td>213</td>
</tr>
<tr>
<td>The Effects of an Activity-Based Curriculum on Student Outcomes in Chemistry in Thailand</td>
<td></td>
</tr>
<tr>
<td>Julia Atkin</td>
<td>223</td>
</tr>
<tr>
<td>Science Curricula for Adaptive Schools. A Report from the Workface</td>
<td></td>
</tr>
<tr>
<td>Research Notes</td>
<td>230</td>
</tr>
<tr>
<td>Addresses of the authors of papers</td>
<td>232</td>
</tr>
<tr>
<td>Guidelines for authors</td>
<td>234</td>
</tr>
</tbody>
</table>
PREFACE

Fourteen years ago a number of science educators met at Monash University for a two-day conference to discuss their current research interests, research priorities, and the establishment of an Australian research association. A report was published by Colin Power in The Australian Science Teachers Journal (Vol. 16, No.2, 1970, pp.51-5), and he noted that the participants were involved with the I.E.A. Science Project, the evaluation of new science curricula, Piagetian stages, classroom interaction, teacher preparation, non-technical terms in science teaching, standardised tests, and measures of achievement, laboratory skills, and readability. One of the priorities for future research was more 'precise information about the readiness and difficulties' of pupils. Now, almost one and a half decades later this publication contains a number of reports on pupils' science concepts and the alternative frameworks they use to interpret natural phenomena. Mitchell and Gunstone, for example, describe conceptions held by Year 11 chemistry students in the general field of stoichiometry. Jones demonstrates how some 9-year-olds interpret 'solid' to mean hard, unbreakable, inflexible, not-hollow and Biddulph and Osborne, in their report of children's ideas about floating, note that many believe the top of an iceberg is the only part floating and if it were cut off, the bottom part would sink! Gunstone describes some pre-instructional alternative frameworks that Year 10 girls possess in the area of mechanics while Gardner probes the post-instructional frameworks of Year 12 physics students following instruction on circular motion. Carr examines the chemist's concepts of acids and bases and suggests that students' difficulties in this area may be more usefully perceived in terms of confusion about the models used in teaching the concepts rather than as a conflict between pre-conceptions and the scientific view. West and Pines also caution us. They argue that the research on students' misconceptions and alternative frameworks can lead to narrow perspectives about students' efforts to learn. They present a 'sources-of-knowledge' view of science learning which they believe has important implications for an alternative conception of science education.
This year, in contrast to 14 years ago, there are no reports of Piagetian studies. Dawson and Rowell, however, draw upon Piagetian ideas and recent work on alternative frameworks to explore, empirically, students' conceptual changes in dealing with the displacement of water by solid objects. Curriculum issues still concern science educators today but they differ from those addressed in 1970. Walsh et al. describe attempts to develop a substantial science course for intending primary teachers, Appleton et al. evaluate teachers' guides for the Learning in Science Project (Primary) in New Zealand, Klainin reports on the effects on Thai students of an activity based chemistry curriculum and Atkin, in a report from the workplace, tells how teachers in a school successfully developed curriculum units to meet the needs of their pupils.

Issues about teacher education are addressed by Appleton, Happs, and Fawns and several papers report on students' perceptions of health (Garrard & Brumby; Maddock, et al.) and of their learning environments (Tisher). A few papers explore a new theme on pupils' learning strategies. As has been noted already West and Pines present their 'sources of knowledge' view of science learning but, in addition, Hayes and Symington examine children's drawing strategies and Dall'Alba and Northfield report on pupils' cognitive learning strategies. They present a learning strategy profile for a student on four learning tasks.

The preceding paragraphs do not refer to all of the matters that were discussed in the sessions of the fifteenth annual conference of the Australian Science Education Research Association. They do, however, give some of the flavour of the conference and indicate how the issues addressed differed from those of 14 years ago. The fifteenth conference also contained a number of sessions dealing with research in progress or being conceived. Some of these are noted in the new Research Notes section at the end of this publication.

Richard P. Tisher
Editor
ADDRESSES OF THE AUTHORS OF PAPERS

APPLETON, Ken
165 Farrer Hall, Monash University, Clayton, 3168, Victoria

ATKIN, Julia
'Bumgum', Harden, 2587, New South Wales.

BIDDULPH, Fred
Science Education Research Unit, University of Waikato, Private Bag, Hamilton, New Zealand

BRUMBY, Margaret
Faculty of Education, Monash University, Clayton, 3168, Victoria

CARR, Malcolm
School of Science, University of Waikato, Private Bag, Hamilton, New Zealand

DALL'ALBA, Gloria
Faculty of Education, Monash University, Clayton, 3168, Victoria

DAWSON, Chris
Department of Education, University of Adelaide, Box 498, Adelaide, 5001, South Australia

EDWARDS, John
James Cook University, Townsville, North Queensland

FAWNS, Rod
Faculty of Education, University of Melbourne, Parkville, 3052, Victoria

FENSHAM, Peter
Faculty of Education, Monash University, Clayton, 3168, Victoria

FRIEDLER, Yael
Israel Science Teaching Centre, Hebrew University, Jerusalem, Israel

GARDNER, Paul
Faculty of Education, Monash University, Clayton, 3168, Victoria

GARRARD, Jan.
Faculty of Education, Monash University, Clayton, 3168, Victoria

GUNSTONE, Richard
Faculty of Education, Monash University, Clayton, 3168, Victoria

HAPPS, John
Churchlands Campus, W.A. College of Advanced Education, Churchlands, 6018, Western Australia

HAWE, Eleanor
Science Education Research Unit, University of Waikato, Private Bag, Hamilton, New Zealand

HAYES, Dorothy
Malvern Primary School, 27 Tooronga Road, Malvern, 3145, Victoria

JONES, Brian
Centre for Education, University of Tasmania, G.P.O. Box 252C, Hobart, 7001, Tasmania

KERRISON, Rex
Centre for Education, University of Tasmania, G.P.O. Box 252C, Hobart, 7001, Tasmania
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLAININ, Sume</td>
<td>Normanby House, Monash University, Clayton, 3168, Victoria</td>
</tr>
<tr>
<td>LYNCH, Paddy</td>
<td>Centre for Education, University of Tasmania, G.P.O. Box 252C, Hobart, 7001, Tasmania</td>
</tr>
<tr>
<td>MADDOCK, Max</td>
<td>Faculty of Education, University of Newcastle, Newcastle, 2308, New South Wales</td>
</tr>
<tr>
<td>MARLAND, per</td>
<td>James Cook University, Townsville, North Queensland</td>
</tr>
<tr>
<td>MITCHELL, Ian</td>
<td>Faculty of Education, Monash University, Clayton, 3168, Victoria</td>
</tr>
<tr>
<td>MOORE, Phil.</td>
<td>Faculty of Education, University of Newcastle, 2308, New South Wales</td>
</tr>
<tr>
<td>NORTHFIELD, Jeff</td>
<td>Faculty of Education, Monash University, Clayton, 3168, Victoria</td>
</tr>
<tr>
<td>OSBORNE, Roger</td>
<td>Department of Physics, University of Waikato, Hamilton, New Zealand</td>
</tr>
<tr>
<td>PINES, Leon</td>
<td>Sonoma State University, California, U.S.A.</td>
</tr>
<tr>
<td>ROWELL, Jack</td>
<td>Department of Education, University of Adelaide, Box 498, Adelaide, 5001, South Australia</td>
</tr>
<tr>
<td>STRUBE, Paul</td>
<td>Centre for Education, University of Tasmania, G.P.O. BOX 252C, Hobart, 7001, Tasmania</td>
</tr>
<tr>
<td>SYMINGTON, David</td>
<td>Victoria College, 336 Glenferrie Road, Malvern, 3144, Victoria</td>
</tr>
<tr>
<td>TAMIR, Pinchas</td>
<td>Israel Science Teaching Centre, Hebrew University, Jerusalem, Israel</td>
</tr>
<tr>
<td>TISHER, Richard</td>
<td>Faculty of Education, Monash University, Clayton, 3168, Victoria</td>
</tr>
<tr>
<td>WHITE, Richard</td>
<td>Faculty of Education, Monash University, Clayton, 3168, Victoria</td>
</tr>
<tr>
<td>WALSH, Max</td>
<td>Centre for Education, University of Tasmania, G.P.O. BOX 252C, Hobart, 7001, Tasmania</td>
</tr>
<tr>
<td>WARREN, Bill</td>
<td>Faculty of Education, University of Newcastle, 2308, New South Wales</td>
</tr>
<tr>
<td>WEST, Leo</td>
<td>Higher Education Advisory and Research Unit, Monash University, Clayton, 3168, Victoria</td>
</tr>
</tbody>
</table>
GUIDELINES FOR AUTHORS OF PAPERS FOR RESEARCH IN SCIENCE EDUCATION

The following requirements have been established to facilitate editing, maintain standards in format and presentation and ensure that as many as possible of the conference papers can be published in RISE.

GENERAL LAY-OUT AND LENGTH

Setting out: The paper (including diagrams, tables, etc.) is to be typed on A4 sized paper, using double-spacing with wide margins - at least 2.5 cms on the left and 1.4 cms on the right. (Note that these margins are to be left on all pages, including those containing tables, diagrams, etc.)

Length: The total length of any one paper must not exceed twelve A4 double-spaced typed pages (this length includes text of the paper, reference lists, and all diagrams, figures, and tables).

Headings: Main headings (central and in capitals) and sub-headings (underlined and left-justified) should be used at reasonable intervals to aid in the reader's comprehension of the text. All pages should be numbered consecutively.

FOOTNOTES AND REFERENCES

Footnotes: These should not be used although Reference Notes, e.g., Smith (Note 1) may be used to refer to unpublished material. The reference notes are to be collated at the end of the paper, e.g.,

Note 1, J.J. Smith, personal communication

References: References to journals and books should follow the criteria of the A.P.A., (see American Educational Research Journal, Vol.18, No.1, for a summary).

In the general text of the paper references should appear as Bernstein (1971) or Fisher and Fraser (1983), then these references should be placed in the reference list as,

*Please note the order of dates, volume number, publisher, place of publication for books and journals, use of upper- and lower-case letters.
At the Annual Conference a number of informal sessions were organised during which members discussed embryo projects or shared ideas about possible future research and development in science education. The following notes have been compiled from the conference abstracts as an addition to the preceding conference papers so that R.I.S.E. readers will gain a more comprehensive picture of the matters that were raised during the conference.

1 Pupils' views about crystals by Brendan Schollum
 This session reported on the progress of a study designed to examine the objectives, teaching, and learning associated with the common junior activity of crystal growing. Some preliminary findings about pupils' ideas about crystals, how they form and where they originate were presented. Pairs of the twenty 13 and 14 year olds who participated were also observed (and questioned) as they attempted to follow instructions on how to make crystals; some details of these observations were also presented and some discussion occurred on future directions for the project.

2 Review of teacher education in primary science by J. Owen, N. Johnson, and R. Welsh
 In this progress report the authors outlined what they had done to date in their study of the state of teacher education in primary science during 1984. The project involves the collection and the dissemination of information which the authors hope will lead to improvements in the teaching of science in primary schools.

3 The science curriculum and the student science laboratory by Elizabeth Hegarty
 A curriculum model was presented showing the role of laboratory work in the educational process in a science discipline. The model was regarded as an attempt to extend ones designed by Johnson, Stake, Saylor and Alexander, and Harnischfeger and Wiley.

4 Developments in the use of interactive videodisc in the teaching of science by G.W. Detrick
 Recent developments in the use of laser videodisc technology were presented and the Tacoma Narrows videodisc was demonstrated. Details of the Annenberg project were also outlined together with the value of the medium for in-service education of science teachers.
5 **Science teaching action research project** (STAR project) by Effie Best

A progress report on what teachers have been doing in the project was presented. Four researchers and advisers are collaborating with eight enthusiastic, competent science teachers on ways to observe one's teaching, to interview pupils and to document observations and interviews. The teachers are trying out teaching strategies designed to change students' beliefs about the world.

6 **Laboratory technicians and laboratory safety** by John Gipps

Several issues about the role and training of laboratory technicians were discussed. It was suggested that:

(a) subject associations could help with the training of technicians;
(b) science co-ordinators should facilitate the training of laboratory technicians, and
(c) appropriately trained laboratory technicians should be concerned with safe storage of materials, security of science laboratories, the testing of demonstrations for safety, assistance to teachers during laboratory lessons, and advice about safety measures to less experienced teachers.

7 **Problem solving in chemistry: determining variables and difficulties in teaching and learning** by Kam Wah Lee

This session consisted of a progress report on research concerning problem solving in chemistry (electrochemistry in particular). In the project an attempt is made to identify variables responsible for problem solving behaviour and to develop a model of problem solving strategy. One part of the study explores the model quantitatively and another investigates the difficulties of teaching and learning problem solving in chemistry.

8 **The effects of an environmental field study program on the environmental attitudes of Grade 6 students** by Dave Burton and John Edwards

This session was a report on the affective changes in 67 Grade 6 students who attended a three-day live-in environmental field studies program. An environmental attitude scale developed for the study was administered to the 67 students and to a control group of 42 students. The results suggested that the program had an effect on some areas of students' attitudes.
RESEARCH NOTES

At the Annual Conference a number of informal sessions were organised during which members discussed embryo projects or shared ideas about possible future research and development in science education. The following notes have been compiled from the conference abstracts as an addition to the preceding conference papers so that R.I.S.E. readers will gain a more comprehensive picture of the matters that were raised during the conference.

1 Pupils' views about crystals by Brendan Schollum
This session reported on the progress of a study designed to examine the objectives, teaching, and learning associated with the common junior activity of crystal growing. Some preliminary findings about pupils' ideas about crystals, how they form and where they originate were presented. Pairs of the twenty 13 and 14 year olds who participated were also observed (and questioned) as they attempted to follow instructions on how to make crystals; some details of these observations were also presented and some discussion occurred on future directions for the project.

2 Review of teacher education in primary science by J. Owen, N. Johnson, and R. Welsh
In this progress report the authors outlined what they had done to date in their study of the state of teacher education in primary science during 1984. The project involves the collection and the dissemination of information which the authors hope will lead to improvements in the teaching of science in primary schools.

3 The science curriculum and the student science laboratory by Elizabeth Hegarty
A curriculum model was presented showing the role of laboratory work in the educational process in a science discipline. The model was regarded as an attempt to extend ones designed by Johnson, Stake, Saylor and Alexander, and Harnischfeger and Wiley.

4 Developments in the use of interactive videodisc in the teaching of science by G.W. Dettrick
Recent developments in the use of laser videodisc technology were presented and the Tacoma Narrows videodisc was demonstrated. Details of the Annenberg project were also outlined together with the value of the medium for in-service education of science teachers.
5 Science teaching action research project (STAR project) by Effie Best
A progress report on what teachers have been doing in the project was presented.
Four researchers and advisers are collaborating with eight enthusiastic, competent science teachers on ways to observe one's teaching, to interview pupils and to document observations and interviews. The teachers are trying out teaching strategies designed to change students' beliefs about the world.

6 Laboratory technicians and laboratory safety by John Gipps
Several issues about the role and training of laboratory technicians were discussed. It was suggested that
(a) subject associations could help with the training of technicians;
(b) science co-ordinators should facilitate the training of laboratory technicians, and
(c) appropriately trained laboratory technicians should be concerned with safe storage of materials, security of science laboratories, the testing of demonstrations for safety, assistance to teachers during laboratory lessons, and advice about safety measures to less experienced teachers.

7 Problem solving in chemistry: determining variables and difficulties in teaching and learning by Kam Wah Lee
This session consisted of a progress report on research concerning problem solving in chemistry (electrochemistry in particular). In the project an attempt is made to identify variables responsible for problem solving behaviour and to develop a model of problem solving strategy. One part of the study explores the model quantitatively and another investigates the difficulties of teaching and learning problem solving in chemistry.

8 The effects of an environmental field study program on the environmental attitudes of Grade 6 students by Dave Burton and John Edwards
This session was a report on the affective changes in 67 Grade 6 students who attended a three-day live-in environmental field studies program. An environmental attitude scale developed for the study was administered to the 67 students and to a control group of 42 students. The results suggested that the program had an effect on some areas of students' attitudes.
RESEARCH
IN
SCIENCE
EDUCATION

Volume 15

Australian Science Education Research Association
RESEARCH IN SCIENCE EDUCATION

Volume 15

Selections of refereed papers from the Sixteenth Annual Conference of the Australian Science Education Research Association, Capricornia Institute, Rockhampton, Queensland, May, 1985.

EDITED BY: Richard P. Tisher Monash University

EDITORIAL BOARD: Tony Blake Riverina-Murray Institute of Higher Education

Richard Gunstone Monash University

Paddy Lynch University of Tasmania

Colin Power Flinders University

BUSINESS MANAGER: Richard T. White Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard P. Tisher, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.

Subscriptions and other orders to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.
A TRIBUTE

On June 11th, 1985 Science Education Research suffered a severe loss when Roger Osborne was killed in an accident near his home in Hamilton, New Zealand. Roger was a staunch supporter of the Australian Science Education Research Association from the first meeting he attended at Wagga Wagga in 1977. Evidence of his interest and activity in science education research are to be found in Volumes 7 to 14 in Research in Science Education. His studies of understanding of science had a major influence on the style of research undertaken in Australia and New Zealand. He will be sadly missed in both countries, not only for the stimulation he gave to our work, but also for his cheerfulness and enthusiasm. He encouraged us all.

Copyright 1985 Australian Science Education Research Association,
Published by Australian Science Education Research Association.

ISSN 0157-244X

Printed by Monash University Printery, Clayton, Victoria,
from camera-ready word processor copy prepared by Dandy Words, Narre Warren North.
CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangorn Saowalak, William Butts and Christine Deer</td>
<td>1</td>
</tr>
<tr>
<td>Fostering inquiry in secondary school science</td>
<td></td>
</tr>
<tr>
<td>laboratories</td>
<td></td>
</tr>
<tr>
<td>Barry Newman</td>
<td>8</td>
</tr>
<tr>
<td>Realistic expectations for traditional laboratory</td>
<td></td>
</tr>
<tr>
<td>work</td>
<td></td>
</tr>
<tr>
<td>Max Walsh and Paddy Lynch</td>
<td>13</td>
</tr>
<tr>
<td>Educating Rita : Part 2. Any more for science, and</td>
<td></td>
</tr>
<tr>
<td>if so, why? An evaluation report</td>
<td></td>
</tr>
<tr>
<td>Jeff Northfield and Richard Gunstone</td>
<td>18</td>
</tr>
<tr>
<td>Understanding learning at the classroom level</td>
<td></td>
</tr>
<tr>
<td>Jim Butler and Warren Beasley</td>
<td>28</td>
</tr>
<tr>
<td>Transitions and student task involvement</td>
<td></td>
</tr>
<tr>
<td>Ian Mitchell and John Baird</td>
<td>37</td>
</tr>
<tr>
<td>A school-based, multi-faculty action research</td>
<td></td>
</tr>
<tr>
<td>project</td>
<td></td>
</tr>
<tr>
<td>to encourage metacognitive behaviour</td>
<td></td>
</tr>
<tr>
<td>Kam-Wah Lee</td>
<td>43</td>
</tr>
<tr>
<td>Cognitive variables in problem solving in chemistry</td>
<td></td>
</tr>
<tr>
<td>Max Waddock</td>
<td>51</td>
</tr>
<tr>
<td>Health attitudes and health awareness in high school</td>
<td></td>
</tr>
<tr>
<td>Students</td>
<td></td>
</tr>
<tr>
<td>Jan Garrard and Margaret Brumby</td>
<td>58</td>
</tr>
<tr>
<td>Living and learning in a hectic world : students'</td>
<td></td>
</tr>
<tr>
<td>perceptions of stress</td>
<td></td>
</tr>
<tr>
<td>Peter Davis</td>
<td>68</td>
</tr>
<tr>
<td>The attitude and knowledge of Tasmanian secondary</td>
<td></td>
</tr>
<tr>
<td>students towards energy conservation and the</td>
<td></td>
</tr>
<tr>
<td>environment</td>
<td></td>
</tr>
<tr>
<td>Keith Steud</td>
<td>76</td>
</tr>
<tr>
<td>An exploration, using Ajzen and Fishbein's theory of</td>
<td></td>
</tr>
<tr>
<td>reasoned action, of students' intentions to study</td>
<td></td>
</tr>
<tr>
<td>or not to study science</td>
<td></td>
</tr>
<tr>
<td>John Edwards</td>
<td>86</td>
</tr>
<tr>
<td>Science education - time for a paradigm shift?</td>
<td></td>
</tr>
</tbody>
</table>
Richard White
The importance of context in educational research 92

Judith Kinneur, D. Gleeson and C. Comerford
Use of concept maps in assessing the value of a
computer-based activity in biology 103

Hanna Arzi
The long-term kinetics of conceptual development;
the case of + = - and contextual differentiation 112

Ken Appleton
Children’s ideas about temperature 122

William Butts
Children’s understanding of electric current 127

Peter Fensham and Barbara Johnson
Learners’ response to the idea of environment 131

Peter Searle
Circular motion concepts of first year engineering
students 140

Catherine Ameh and Richard Gunstone
Teachers’ concepts in science 151

Kym Fraser and John Edwards
The effects of training in concept mapping on student
achievement in traditional classroom tests 158

Rod Fawns
Negotiating an Australian general science. The
professional dilemma 1939-45 166

Howard Feurn-Wannan
Predicting tertiary academic performance in terms of
student cognitive and non-cognitive variables 176

Malcolm Rosier
The analysis of science curricula in Australia 182

Research Notes 190

Addresses of the Authors of papers 194

Guidelines for authors 196
(v)

PREFACE

Concept mapping still appears to be a predominant activity among science educators in Australia. In this issue of Research in Science Education, Appleton, for example, adds to the body of knowledge about children’s ideas associated with temperature and Butts reports on children’s understanding of electric current. Searle complements information in previous issues of RISE by detailing first year engineering students’ concepts of circular motion, Fensham and Johnson tell us about learners’ ideas of environment, and Ameh and Gunstone focus on teachers’ concepts in science.

The characteristics of learners have also interested researchers. Kam-Wah Lee considers six cognitive variables that are associated with pupils’ problem solving in electro-chemistry at IISC level, Maddock reports on students’ awareness of and attitudes to health and Garrard and Brumby on their perceptions of stress. Fearman-Wannon also focuses on characteristics but uses cognitive and noncognitive variables to predict academic performance. Other papers, those by Walsh and Lynch, Northfield and Gunstone, Butler and Beasley, and Mitchell and Baird address teacher training and teaching issues. The Walsh and Lynch paper is a follow-on from a 1984 RISE paper describing the introduction of a compulsory science subject into first year primary teacher training in Tasmania. The 1985 paper considers the perceptions of science and science teaching held by those students who elected to continue with a study of science. The Northfield and Gunstone paper, on the other hand, describes the authors’ experiences in a secondary classroom and their attempts to implement their understanding of learning. They conclude that that understanding has been modified by their experiences and that, in particular, the effects of peer group interactions in the classroom have been under-estimated as a factor in the learning environment.

Two papers by Snowaluck et al and Newman address issues associated with the role of laboratory work in science education, and Rosier reports on an IEA study using data about science curricula in Australia. Fawns presents an historical perspective on general science in Australia, White directs attention to the importance of context in educational research, while Edwards, in an embryonic paper, attempts to assess the domination that Newtonian Physics and the Cartesian belief in the certainty of knowledge have had on our belief systems. The impact on science teaching is also discussed with particular reference to the writings of Capra.
Further details about some completed projects, and studies under way, are provided in the research notes. There are details about teachers as researchers, probing understanding of environmental concepts using visual stimuli, the quality of learning outcomes, and a school developed science programme for poor readers and children's understanding of inheritance.

Richard P. Tisher

Editor
In addition to the reports which appear in the preceding pages there were other presentations at the conference about research in progress, aspects of data collection, and speculations about future studies in science education. The following notes have been compiled so that R.I.S.E. readers will become acquainted with other significant matters that were discussed during the annual conference.

1. **Assessing the quality of learning outcomes** by Gloria Dalli'Alba

Traditionally in science classrooms, the assessment of learning has been primarily concerned with the quantity of knowledge that is recollected. More recently researchers have expressed the need to focus on the quality of the learning outcome. But how can the quality of learning outcomes be assessed? This presentation addressed that question and considered a way of defining learning outcomes, an operational definition of the quality of learning outcomes, and difficulties in measuring the quality of learning outcomes. The presentation was essentially a report of research in progress, and included several extracts from transcripts taken from interviews with students in years 8 and 9. The investigator pointed out that an operational definition of the quality of learning outcomes should incorporate the dimensions of extent, precision, accord with reality or generally accepted truth, ratio of internal to external associations, complexity, and relevance to the task. It was also noted that the difficulties in measuring the quality of learning outcomes were due to the multi-factorial nature of quality, and to variation in the relative importance of the quality dimensions on the same task and between tasks.

2. **Probing students' understanding of environment concepts using visual stimuli** by Barbara Johnson and Peter Bensham

In this presentation the techniques of using visual stimuli in the form of photographs, to investigate students' understanding of, and interest in the environment, were presented. Students in years 7, 9 and 11 at two neighbouring High Schools and students in year 5 of three feeder Primary Schools were asked one question for each of three different sets of six photographs. The questions were:

a) Which two of these six environments would you like to be in?

b) These six photographs each show environmental problems. Select any two and name the problem shown.
c) These photographs show different environmental issues. If you could select your science course for the rest of the year, which two would you like to learn about, and why?

As a consequence of their research the investigators concluded that the presentation of photographs of environmental situations to the groups of students produced a surprisingly common set of responses. They found that for each of the tasks one or two of the environmental situations were preferred as choices, and these preferences tended to be the same for at least years 7, 9 and 11 and for two of the tasks at year 5 also. There was also little evidence of significant shifts in the strength of these preferences with age (year 7 to 11). The investigators stated that the existence of such clear preferences, at least for students in a common social milieu, and the ease with which this methodology revealed them, are both of interest. It immediately becomes obvious to ask how widespread are such common preferences. Would they extend throughout a large metropolitan city like Melbourne, or would western and eastern suburban students respond differently? Further research of this sort could answer such questions.

3. Teachers as researchers in primary science: The use of the clinical mode by P. Lynch, B. Jones, C. Avery, J. Blackaby, L. Hurburgh & R. Matthyoz

This presentation described the attempts of a group of primary science teachers to implement a clinical method or mode to provide a basis for subsequent teaching of science topics in class. The presentation outlined the stages followed to reach decisions about classroom teaching. First, there was a Piagetian type, clinical interview of selected primary school students to explore their understandings of nature of matter. Data from the interviews allowed concept maps to be constructed. Second, a multiple choice questionnaire (with a short free response section) was administered to obtain more detail about pupils' understandings. Finally, from the insights gained from the first two stages teaching sequences and approaches were selected for a series of lessons. For instance, Grade 2 lessons were designed to be almost entirely oral with some drawings, while Grade 3 lessons required pupils to make written responses on large sheets of paper. The responses were decoded by the teacher during discussion. The teachers involved in the exercise indicated they were pleased with the results, and that there were shifts in their thinking about the meaning and importance of the concepts being taught and about the teaching processes.

4. Children's understanding of inheritance by Marjory Martin and Judith Kinnear

This presentation reported a study to investigate children's understanding of inheritance. A sample of grade 6 children (N = 84) from three different schools was used and data were collected using pencil and paper tasks on aspects of
inheritance and computer simulations for pairs of children to identify rules that
govern the inheritance of coat colour, pattern and tail length in a familiar
domestic animal. It was noted that children recognise the existence of many rules
relating to inheritance but, in some cases, have alternative concepts based on
observations outside a genetics context.

5. Enquiry teaching in the chemistry laboratory by Raymond Nadeau and
Marshall Nay
This session described an action research study to determine the extent to which
students were able to attain enquiry objectives while performing specially
designed enquiry oriented chemistry experiments. The subjective meanings and
feelings that students had regarding this type of learning were also investigated.
The laboratory programme was conducted with a grade 12 chemistry class during
an entire semester. Behavioural objectives in the conceptual, affective and
scientific skill domains were measured by means of two paradigms – the empirical
analytic, and the situational interpretive. The instruments used to gather data for
the evaluations included a chemistry achievement examination, processes of
science test, test on scientific attitudes, laboratory questionnaires, students'
written comments, taped interviews, laboratory reports and teacher's log.
Although students in this study spent considerably more time in laboratory related
activities than did students in conventional chemistry teaching, they performed
very well on the achievement test. In pre- and post-testing, they showed
significant gain on the process skill test but not on the test of scientific
attitudes. A significant majority of students found the laboratory programme not
only challenging, interesting and enjoyable, but also felt that the enquiry
experiments were preferable to the highly structured experiments performed in
previous years. The investigators concluded that the research results showed that
enquiry oriented learning and teaching is viable in high school chemistry.

6. The learning environment of a school developed science program for poor readers
by Steve Ritchie
This presentation reported some initial results from a comprehensive evaluation of
a school developed program to provide alternative science instruction for poor
readers in normal classes. A number of procedures were used to gather
comprehensive data for the evaluation, e.g. observations of lessons, interviews
with students and staff, and the administration of an environment questionnaire,
namely the "My Class Inventory". This learning environment inventory was
modified to cater more adequately for both staff and student responses by using a
four-point response format. The data obtained using the inventory and other
techniques were interpreted as providing a comparable picture of the learning
environment. For instance the mean scale scores obtained for staff (N = 5) and students (N = 23) on all scales were of the order of 17.5 or greater. These scores were interpreted to indicate that the Year 8 science bridging program provided a pleasant and productive learning environment. As well, these data and that obtained through the other procedures, were interpreted as indicating that generally the intended science bridging program curriculum had been implemented. Data from the interviews and observations also indicated that many students finished the required activities earlier than expected, and teachers rarely found opportunities in the classroom to interact with the science bridging program students. As a consequence other recommendations for change were proposed.
Addresses of Authors of Papers

AMEH, Catherine
Monash University, Clayton, Victoria.

APPLETON, Ken
CIAE, Rockhampton, Queensland.

ARZI, Hanna
Monash University, Clayton, Victoria.

BAIRD, John
Melbourne CAE, Carlton Campus, Melbourne Victoria.

BEASLEY, Warren
University of Queensland, St. Lucia, Queensland.

BRUMBY, Margaret
Monash University, Clayton, Victoria.

BUTLER, Jim
University of Queensland, St. Lucia, Queensland.

BUTTS, William
Macquarie University, Sydney, N.S.W.

DAVIS, Peter
University of Queensland, St. Lucia, Queensland.

DEER, Christine
Macquarie University, Sydney, N.S.W.

EDWARDS, John
James Cook University, Townsville, Nth. Queensland.

FAWNS, Rod
University of Melbourne, Melbourne, Victoria.

FEARN-WANNAN, Howard
Royal Melbourne Institute of Technology, Melbourne, Victoria.

FENSHAM, Peter
Monash University, Clayton, Victoria.

FRASER, Kym
Mackay Senior High School, Mackay, Queensland.

GARRARD, Jan
Monash University, Clayton, Victoria.

GUNSTONE, Richard
Monash University, Clayton, Victoria.

JOHNSTONE, Barbara
Monash University, Clayton, Victoria.

KINNEAR, Judith
Lincoln Institute, Carlton, Victoria.

LEE, Kam-Wah
Monash University, Clayton, Victoria.

LYNCH, Paddy
University of Tasmania, Hobart, Tasmania.

MADDOCK, Max
University of Newcastle, Newcastle, N.S.W.

MITCHELL, Ian
Monash University, Clayton, Victoria.

NEWMAN, Barry
University of New South Wales, Kensington, N.S.W.

NORTHFIELD, Jeff
Monash University, Clayton, Victoria.
ROSIER, Malcolm ACER, Hawthorn, Victoria.
SAOWALAK, Bangorn c/- School of Education, Macquarie University, Sydney N.S.W.
SEARLE, Peter Bendigo College of Advanced Education, Bendigo, Victoria.
WALSH, Max University of Tasmania, Hobart, Tasmania.
WHITE, Richard Monash University, Clayton, Victoria.
GUIDELINES FOR AUTHORS OF PAPERS FOR RESEARCH IN SCIENCE EDUCATION

The following requirements have been established to facilitate editing and maintain standards in format and presentation.

GENERAL LAY-OUT AND LENGTH

Setting out: The paper (including diagrams, tables, etc.) is to be typed on A4 sized paper, using double-spacing with wide margins - at least 2.5 cms on the left and 1.4 cms on the right. (Note that these margins are to be left on all pages, including those containing tables, diagrams, etc.)

Length: The total length of any one paper must not exceed twelve A4 double-spaced typed pages (this length includes text of the paper, reference lists, and all diagrams, figures, and tables).

Figures: Camera-ready copies must be supplied with the paper.

Headings: Main headings (central and in capitals) and sub-headings (underlined and left-justified) should be used at reasonable intervals to aid in the reader's comprehension of the text. All pages should be numbered consecutively.

FOOTNOTES AND REFERENCES

Footnotes: These should not be used although Reference Notes, e.g., Smith (Note 1) may be used to refer to unpublished material. The reference notes are to be collated at the end of the paper, e.g.,

Note 1, J.J. Smith, personal communication

References: References to journals and books should follow the criteria of the A.P.A.

In the general text of the paper references should appear as Bernstein (1971) or Fisher and Fraser (1983), then these references should be placed in the reference list as,

* Please note the order of dates, volume number, publisher, place of publication for books and journals, use of upper- and lower-case letters.
RESEARCH
IN
SCIENCE EDUCATION

Volume 16

EDITED BY: Richard P. Tisher Monash University

EDITORIAL BOARD: Hanna Arzi Monash University
Warren Beasley Board of Secondary Studies Queensland
Paul Strube South Australian College of Advanced Education (Underdale)

BUSINESS MANAGER: Richard T. White Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard P. Tisher, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.

Subscriptions and other orders to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>(vi)</td>
</tr>
<tr>
<td>Jan Garrard</td>
<td>1</td>
</tr>
<tr>
<td>Creative learning in science education</td>
<td></td>
</tr>
<tr>
<td>Gloria Dall’Alba</td>
<td>11</td>
</tr>
<tr>
<td>Learning strategies and the learner’s approach to a problem solving task</td>
<td></td>
</tr>
<tr>
<td>Kam-Wah Lee</td>
<td>21</td>
</tr>
<tr>
<td>Case studies of teaching problem solving</td>
<td></td>
</tr>
<tr>
<td>Catherine Ameh</td>
<td>31</td>
</tr>
<tr>
<td>Common sense answers in physics</td>
<td></td>
</tr>
<tr>
<td>Ray Peterson, David Treagust and Patrick Garnett</td>
<td>40</td>
</tr>
<tr>
<td>Identification of secondary students’ misconceptions of covalent bonding and structure concepts using a diagnostic instrument</td>
<td></td>
</tr>
<tr>
<td>Colin Gaucl</td>
<td>49</td>
</tr>
<tr>
<td>Models, meters and memory</td>
<td></td>
</tr>
<tr>
<td>David Symington, Keith Boundy, Tom Radford and Rosemary Taylor</td>
<td>55</td>
</tr>
<tr>
<td>Prior knowledge and primary pupils’ interaction with a museum display</td>
<td></td>
</tr>
<tr>
<td>Pranee Rice and Richard Gunstone</td>
<td>63</td>
</tr>
<tr>
<td>Health and sickness causation and the influence of Thai culture among Thai schoolchildren</td>
<td></td>
</tr>
<tr>
<td>Catherine Ameh and Richard Gunstone</td>
<td>73</td>
</tr>
<tr>
<td>Science teachers’ concepts in Nigeria and Australia</td>
<td></td>
</tr>
<tr>
<td>Hanna J. Arzi and Richard T. White</td>
<td>82</td>
</tr>
<tr>
<td>Questions on students’ questions</td>
<td></td>
</tr>
<tr>
<td>Peter Fensham</td>
<td>92</td>
</tr>
<tr>
<td>Lessons from science education in Thailand: a case study of gender and learning in the physical sciences</td>
<td></td>
</tr>
<tr>
<td>Miriam Ben-Peretz and Joseph Menis</td>
<td>101</td>
</tr>
<tr>
<td>Conditions of learning in science classrooms and what we can learn from them.</td>
<td></td>
</tr>
<tr>
<td>John Bailey, Colin Boylan, Rodney Francis and Doug Hill</td>
<td>111</td>
</tr>
<tr>
<td>Constructs used by science teachers to describe able students: a pilot study</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Jeff Northfield</td>
<td>Increasing curriculum responsibility: science teachers respond to a new challenge</td>
</tr>
<tr>
<td>Richard Tisher</td>
<td>New directions for Australian research on science teacher education</td>
</tr>
<tr>
<td>Paul Strube</td>
<td>Explanation and explaining in science education</td>
</tr>
<tr>
<td>Ian Mitchell and John Baird</td>
<td>Teaching, learning and the curriculum - 1: The influence of content in science</td>
</tr>
<tr>
<td>Judie Mitchell and John Baird</td>
<td>Teaching, learning and the curriculum - 2: Science and Beyond</td>
</tr>
<tr>
<td>Nicholas Twoli</td>
<td>Sex differences in science education in a developing country: Kenya</td>
</tr>
<tr>
<td>Malcolm Carr, Beverley Bell, Valda Kirkwood, Jane McChesney, Roger Osborne and David Symington</td>
<td>LISP (Energy) - the framework</td>
</tr>
<tr>
<td>Valda Kirkwood, Malcolm Carr and Jane McChesney</td>
<td>LISP (Energy) - some preliminary findings</td>
</tr>
<tr>
<td>Warren Beasley and Jim Butler</td>
<td>Moving from one setting to another: student reactions around transitions</td>
</tr>
<tr>
<td>Ronald Oliver and James Okey</td>
<td>Using computer simulations to promote achievement and transfer</td>
</tr>
<tr>
<td>David Treagust</td>
<td>Evaluating students' misconceptions by means of diagnostic multiple choice items</td>
</tr>
<tr>
<td>John Happs</td>
<td>Constructing an understanding of water quality: public perceptions and attitudes concerning three different water bodies</td>
</tr>
<tr>
<td>Patrick Garnett</td>
<td>Exemplary chemistry teaching in Perth schools</td>
</tr>
</tbody>
</table>
Jack Rowell and Chris Dawson
Integrating schematic representations of knowledge: a theoretical stimulus to science educators? 226

Research notes 233

Addresses of the authors of papers 236

Guidelines for authors 238
(vi)

PREFACE

Research on science education continues to flourish and this issue of R.I.S.E. has been increased in size in order to accommodate and illustrate the diversity of activity in Australia and elsewhere. This issue contains a diversity of themes which provide a rich smorgasbord for the reader.

There are two papers dealing with gender differences in science education in Thailand and Kenya, two dealing with action research projects associated with pupils' learning in science (i.e. the LISP and PEEL projects), one associated with the curriculum frameworks proposals in Victoria, another on computer simulations, several on classroom strategies, one related to Piagetian concepts and schematic representations of knowledge and, once again, a larger cluster (about seven) dealing with students', trainee teachers', teachers' and other adults' science concepts, memory structures and misconceptions.

That is not the complete smorgasbord since there are several newer themes appearing in other papers. For the first time there is a report of a pilot project to study the nature of the questions pupils ask, a theoretical analysis of the nature of explanation and two attempts to provide theoretical underpinnings to research on pupils' learning in science. Two papers re-introduce themes that were current several decades ago by referring to teachers' constructs of able students and the attributes of exemplary teachers. In the remaining papers readers are given details about conditions of science learning in Canada and provided with some new challenging directions for future research in science education.

Richard P. Tisher

Editor
AMEH, Catherine
Faculty of Education, Monash University.

ARZI, Hanna
Faculty of Education, Monash University.

BAILEY, John
Riverina-Murray Inst. of Higher Education.

BAIRD, John
Melbourne College of Advanced Education, Carlton.

BEASLEY, Warren
Board of Secondary Studies, Queensland.

BEN PERETZ, Miriam
University of Haifa, Israel.

BOUNDY, Keith
Victoria College, Toorak Campus.

BOYLAN, Colin
Riverina-Murray Inst. of Higher Education.

CARR, Malcolm
S.E.R.U., University of Waikato, N.Z.

DALL'ALBA, Gloria
Faculty of Education, Monash University.

DAWSON, Chris.
Dept. of Education, University of Adelaide.

FENSHAM, Peter
Faculty of Education, Monash University.

FRANCIS, Rodney
Riverina-Murray Inst. of Higher Education.

GARRARD, Jan
Faculty of Education, Monash University.

GAULD, Colin
School of Education, University of N.S.W.

GUNSTONE, Richard
Faculty of Education, Monash University.

HAPPS, John
West. Australia College of Advanced Education.

HILL, Doug.
Riverina-Murray Inst. of Higher Education.

KIRKWOOD, Valda
S.E.R.U., University of Waikato, N.Z.

LEE, Kam-Wah
c/- Faculty of Education, Monash University.

MITCHELL, Ian
34 Coronet St., Flemington, Vic.

MITCHELL, Judith
34 Coronet St., Flemington, Vic.

NORTHFIELD, Jeff
Faculty of Education, Monash University.

OKEY, James
West. Australian Institute of Technology.

OLIVER, Ronald
Churchlands College of Adv. Education, Perth. W.A.

PETERSON, Ray
Urbrae Agricultural High School, Urbraye, S.A.
RICE, Prance
ROWELL, Jack
STRUBE, Paul
TISHER, Richard
TREAGUST, David
TWOLI, Nicholas
WHITE, Richard
Faculty of Education, Monash University.
Dept. of Education, University of Adelaide.
Underdale site, Sth. Aust. C.A.E.
Faculty of Education, Monash University.
West. Australian Institute of Technology.
School of Education, Flinders University, S.A.
Faculty of Education, Monash University.
GUIDELINES FOR AUTHORS OF PAPERS FOR
RESEARCH IN SCIENCE EDUCATION

The following requirements have been established to facilitate editing and maintain standards in format and presentation.

GENERAL LAY-OUT AND LENGTH

Setting out: The paper (including diagrams, tables, etc.) is to be typed on A4 sized paper, using double-spacing with wide margins - at least 2.5 cms on the left and 1.4 cms on the right. (Note that these margins are to be left on all pages, including those containing tables, diagrams, etc.)

Length: The total length of any one paper must not exceed twelve A4 double-spaced typed pages (this length includes text of the paper, reference lists, and all diagrams, figures, and tables).

Figures: Camera-ready copies must be supplied with the paper.

Headings: Main headings (central and in capitals) and sub-headings (underlined and left-justified) should be used at reasonable intervals to aid in the reader's comprehension of the text. All pages should be numbered consecutively.

FOOTNOTES AND REFERENCES

Footnotes: These should not be used although Reference Notes, e.g., Smith (Note 1) may be used to refer to unpublished material. The reference notes are to be collated at the end of the paper, e.g.,

Note 1, J.J. Smith, personal communication

References: References to journals and books should follow the criteria of the A.P.A. In the general text of the paper references should appear as Bernstein (1971) or Fisher and Fraser (1983), then these references should be placed in the reference list as,

* Please note the order of dates, volume number, publisher, place of publication for books and journals, use of upper- and lower-case letters.
RESEARCH NOTES

These notes contain brief references to a number of presentations at the 17th annual conference of the Australian Science Education Research Association. More detailed texts or manuscripts may be obtained from the authors.

1. An evaluation of the use of a programming grid in the science curriculum, Patrick Cronin, St. John's College, Whyalla, S.A.
 This paper deals with a programming grid as a tool for the development of a science programme in a school. Recommendations are made on how to expand the grid, organization of in-service workshops and the development of language analysis techniques for teachers.

2. School Science; Social purposes and liberal values, Rod Fawns, University of Melbourne,
 School science was originally composed by academic scientists and textbook authors out of what they conceived to be the most important, or the simplest part of their subjects. They made a sort of anthology of science. The professionalization of science and science teaching clearly has been served by school science. But why has school science remained an anthology of essential definitions?

3. The repertory grid as an alternative/complementary probe in science education, John Happs, Western Australian College of Advanced Education, & Keith Stead, Gippsland Institute of Advanced Education.
 The current interest in the ideas pupils bring to their science lessons has led to the exploration and development of a variety of techniques to reveal these 'naive' ideas.
 This paper provides illustrations of the use of the "Repertory Grid" in two different areas of interest in science education. The first examines aspects of a pupil's outlook on science, and the second examines aspects of a pupil's understanding of rocks and minerals.

4. Scientists in the making, Jan Harding, Chelsea College, University of London.
 School science is all too frequently presented as a set of abstracted immutable laws enabling control but divorced from emotional response. As such it offers a refuge for the emotionally reticent male, but has little meaning for the female. Many of the girls who do choose science see in it a way of making a contribution to the world.
Analysis suggests that not only values, but cognitive approaches, may differ. The male may seek generalizations and work by isolating and controlling variables—a method used with considerable success in the physical sciences. Recent studies of a few women scientists working within the life sciences suggest they approach their material with greater humility and a sense of identification with it.

The implications for curriculum development and for research in science education are examined.

As part of the Second International Science Study in Australia, data were collected on the distribution of computers in students' homes and in their schools. This paper examines the data showing the distribution of computers in the homes and schools of students in Australia, and looks at characteristics of the students who are using computers frequently. The associations between the frequency with which students use a computer and their science achievement and attitudes to the importance of science is explored.

6. *Polynesian students' outlooks on science*, Keith Stead, Gippsland Institute of Advanced Education.

This paper provides a further example of the application of the Theory of Reasoned Action (TRA) by seeking an explanation for the under-representation of Polynesian students in the sciences. These TRA insights are complemented by data collected from interviews conducted with the parents of Polynesian students.

These approaches suggest the term "Polynesian" needs to be seen as encompassing at least two distinct subgroups, the Maori and the Pacific Islander, and that different mechanisms appear to be responsible for each subgroup's under-representation in the sciences.

How does one evaluate the effectiveness of an organization such as the Australian Science Education Research Association? This paper casts some light on this question by examining the interaction between the Association and aspects of the professional activity of the late Roger Osborne.

It is argued that such an analysis indicates that in Osborne's case the Association has achieved its aim but that this is due, in no small measure, to Osborne's ability to capitalize on the opportunity arising from his membership of the Association.
Equity versus quality: Problems in selecting students for science teacher education programmes in developing countries, Euwe van den Berg, c/- Science and Mathematics Education Centre, W.A.I.T.

Secondary schools in developing countries generally show a far wider range of quality than those in the so-called "developed" countries. This creates serious problems in admission to tertiary institutions. Admission tests usually produce a ranking which closely follows the ranking in school quality, however, both politically and educationally this is not acceptable. Further, ethically one would like to create some upward mobility and give opportunities to disadvantaged kids. The above problems are not unlike admission problems involving minorities in Western countries including Australia.

This paper describes admission test and policy research carried out in Indonesia for the past 5 years and compares it with work done in African Countries.
RESEARCH IN SCIENCE EDUCATION

Volume 17

Selections of refereed papers from the Eighteenth Annual Conference of the Australian Science Education Research Association held in Wagga Wagga, New South Wales, July 1987.

EDITED BY: Richard P. Tisher Monash University

EDITORIAL BOARD: Hanna Arzi Monash University
Warren Beasley University of Queensland
Beverley Bell Department of Education Wellington
John Happs Western Australian College of Advance Education
Keith Stead Gippsland Institute of Advanced Education
Paul Strube South Australian College of Advanced Education (Underdale)

BUSINESS MANAGER: Richard T. White Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard P. Tisher, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.

Subscriptions and other orders to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>(vi)</td>
</tr>
<tr>
<td>Chris Dawson and Jack Rowell</td>
<td>1</td>
</tr>
<tr>
<td>The use of data in problem solving: the whys, whens and wherefores.</td>
<td></td>
</tr>
<tr>
<td>Jan Garrard</td>
<td>11</td>
</tr>
<tr>
<td>Learning in science: some wider perspectives.</td>
<td></td>
</tr>
<tr>
<td>Steve Ritchie</td>
<td>23</td>
</tr>
<tr>
<td>Improving the learning environment for aboriginal students in science classrooms</td>
<td></td>
</tr>
<tr>
<td>Malcolm Carr, Valda Kirkwood and Barry Newman</td>
<td>31</td>
</tr>
<tr>
<td>The matter of energy.</td>
<td></td>
</tr>
<tr>
<td>John Edwards</td>
<td>38</td>
</tr>
<tr>
<td>Teaching thinking: a focus for science teaching?</td>
<td></td>
</tr>
<tr>
<td>Paul Strube</td>
<td>47</td>
</tr>
<tr>
<td>Science and its professionals: views of Australia scientists on science education</td>
<td></td>
</tr>
<tr>
<td>Richard Lowe</td>
<td>56</td>
</tr>
<tr>
<td>Drawing out ideas: a neglected role for scientific diagrams.</td>
<td></td>
</tr>
<tr>
<td>Rod Fawns</td>
<td>67</td>
</tr>
<tr>
<td>Clear thinking and scientific method for our future leaders.</td>
<td></td>
</tr>
<tr>
<td>Keith Skamp</td>
<td>76</td>
</tr>
<tr>
<td>Pre-service teachers: process skill entry behaviour and opinions about teaching primary science</td>
<td></td>
</tr>
<tr>
<td>Colin Gauld</td>
<td>87</td>
</tr>
<tr>
<td>Student beliefs and cognitive structure.</td>
<td></td>
</tr>
<tr>
<td>Max Maddock</td>
<td>94</td>
</tr>
<tr>
<td>Social background, sources of information, models of behaviour, attitude, awareness and behaviour in health-related matters</td>
<td></td>
</tr>
<tr>
<td>Barbara Johnson, Peter Fensham, Gail Hilderbrand and Shirley Sampson</td>
<td>104</td>
</tr>
<tr>
<td>Girls in Science: an evaluation of one school's approach to the gender bias in science</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>John Bailey, Rod Francis and Doug Hill</td>
<td>Exploring ideas about magnets.</td>
</tr>
<tr>
<td>Malcolm Carr, Valda Kirkwood, Barry Newman</td>
<td>Energy in three New Zealand secondary school junior science classrooms.</td>
</tr>
<tr>
<td>and Ralph Birdwhistell</td>
<td></td>
</tr>
<tr>
<td>John Baird, Ian Mitchell and Jeff Northfield</td>
<td>Teachers as researchers: the rationale, the reality.</td>
</tr>
<tr>
<td>Nusirjan and Peter Fensham</td>
<td>Description and frameworks of solutions and reactions in solutions.</td>
</tr>
<tr>
<td>Richard Gunstone, Robin Gray and Peter Searle</td>
<td>Conceptual change: is it of value if students are ignorant of it?</td>
</tr>
<tr>
<td>Anthony Petherstonhaugh, John Happs and David</td>
<td>Student misconceptions about light: a comparative study of prevalent</td>
</tr>
<tr>
<td>Treagust</td>
<td>views found in Western Australia, France, New Zealand, Sweden and the</td>
</tr>
<tr>
<td></td>
<td>United States.</td>
</tr>
<tr>
<td>Roger Cross and Ronald Price</td>
<td>School physics as technology in China during the great proletarian</td>
</tr>
<tr>
<td></td>
<td>cultural revolution: lessons for the west.</td>
</tr>
<tr>
<td>Rod Francis</td>
<td>Drawing together teaching methods and strategies into a model for</td>
</tr>
<tr>
<td></td>
<td>science education.</td>
</tr>
<tr>
<td>John Baird, Peter Fensham, Richard Gunstone</td>
<td>Individual development during teacher training.</td>
</tr>
<tr>
<td>and Richard White</td>
<td></td>
</tr>
<tr>
<td>Bill Butts and Roland Smith</td>
<td>H.S.C. chemistry students' understanding of the structure and</td>
</tr>
<tr>
<td></td>
<td>properties of molecular and ionic compounds.</td>
</tr>
<tr>
<td>N. Hargreaves and Paddy Lynch</td>
<td>Studies in assessment. The practical examination revisited.</td>
</tr>
<tr>
<td>Catherine Ameh</td>
<td>An analysis of teachers' and their students' views of the concept</td>
</tr>
<tr>
<td></td>
<td>'gravity'.</td>
</tr>
<tr>
<td>Paul Webb</td>
<td>Aspects of the non-formal promotion of science education in the</td>
</tr>
<tr>
<td></td>
<td>Eastern Cape, South Africa.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>David Symington and Dorothy Hayes</td>
<td>Parental involvement in a science program.</td>
</tr>
<tr>
<td>Jim Butler and Warren Beasley</td>
<td>The impact of assessment changes on the science curriculum: a descriptive account.</td>
</tr>
<tr>
<td>Beverley Bell</td>
<td>Science curriculum development in New Zealand: an historical account.</td>
</tr>
<tr>
<td>Sylvia Wood and Jacqui Franck</td>
<td>"Girls only" science classes at Scoresby High School.</td>
</tr>
<tr>
<td></td>
<td>Guidelines for authors</td>
</tr>
</tbody>
</table>
PREFACE

Research in Science Education has always contained a high proportion of articles reporting investigations in science education. Although there has been this bias to investigatory reports, there has also been a recognition of the complex relationships that occur between research and practice. The editorial committee believes that results reported in this journal have implications for practice and we hope that numerous readers have, as a consequence, altered science education practices. If that is the case the results have become more than just the stuff of journals and conference papers. This issue also presents more results from investigations and, once again, we hope that readers will act on the implications of the findings. The issue also differs a little from recent volumes of RISE in that there are several descriptive accounts of developments in science education. These accounts refer to changes in assessment practices, developments in science curricula and the nature of physics teaching in another cultural context. The editorial committee invites comments from readers about this greater mix of descriptive and investigatory papers.

Richard P. Tisher

Editor
Research In Science Education, 1987, 17, 253-258.

Editorial comment:

Members of the Australian Science Education Research Association are well aware of many initiatives being taken by teachers in schools to improve the quality of science education and to increase the rate of participation of girls in science courses. ASERA has encouraged teachers to come to the annual conference to tell the researchers about initiatives being taken. For the benefit of RISE readers we have included here one account of science teachers' initiatives presented to the ASERA annual conference.

"GIRLS ONLY" SCIENCE CLASSES AT SCORESBY HIGH SCHOOL

Sylvia Wood and Jacqui Franck

In early 1986 a statistical analysis of the enrolment figures in senior science classes (Years 11 and 12) at Scoresby High School indicated that a disproportionately low number of girls were studying the physical sciences, and that girls were under-represented in senior classes as a whole (see Table 1).

The science staff, in particular, were aware of the debate about girls' participation and success in science, mathematics and technological subjects or careers. What could be done at the school?

THE SITUATION

Scoresby High School is a government high school located in the outer eastern suburbs of Melbourne, Victoria. There were 950 students (389 male and 568 female) with a staff of 80 in 1987.

The school curriculum, discipline and social structures can be described as traditional. Students are expected to wear a uniform, to be prompt to class and polite to other people. Honesty and a respect for the rights of others is also policy. The curriculum offered at Years 11 and 12 is of an academic nature and is based on the Victorian Curriculum and Assessment Board's (VCAB) externally assessed Group 1 subjects.
TABLE 1
MALE/FEMALE STUDENT NUMBERS IN SENIOR SCIENCE CLASSES AT SCORESBY HIGH SCHOOL 1986/87

<table>
<thead>
<tr>
<th>1986 SUBJECT</th>
<th>1987 YEAR</th>
<th>MALE</th>
<th>FEMALE</th>
<th>1987 YEAR</th>
<th>MALE</th>
<th>FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS</td>
<td>11</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>BIOLOGY</td>
<td>12</td>
<td>11</td>
<td>4</td>
<td>17</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
<td>17</td>
<td>12</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>GENERAL SCIENCE</td>
<td>11</td>
<td>19</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td>12</td>
</tr>
</tbody>
</table>

The science Department offers science as a compulsory core subject to all Year 7 to 10 students. It also offers extra science as an elective for Year 10 students.

The male/female ratio of science teachers in 5:6 with four of the female teachers taking senior science classes of chemistry and biology.

The pilot project reported in this paper was conceived by the Science staff at Scoresby High School during 1986. It is hoped that this report of how the "girls only" classes were established within a regular school setting may prompt other schools to address the issues of girls in science.

WHY "GIRLS ONLY"?

After a number of informed discussions at the school with science staff and teachers from other curriculum areas the decision was that the goals that were desirable and achievable included:

- increasing the girls' participation in senior science and in the senior physical sciences in particular;
- broadening the career opportunities of girls by encouraging a greater participation in the sciences;
- attempting to change the attitudes of girls towards the sciences as subjects to be studied at school;
- fostering the confidence of girls in their ability to be successful in science subjects;
- increasing teacher, student and parent awareness of the obstacles facing girls wishing to study sciences.

A literature search to see how others had attempted to solve the problems of discrimination against girls in science classes presented three possibilities, namely:

i) attempt to alter the teaching practices of the teachers to take into account specific problems faced by girls in mixed science classes, i.e. teacher awareness of adverse classroom dynamics;

ii) radically changing the current science curriculum, i.e., sexually inclusive curriculum;

iii) trial "girls only" classes and research the effect this would have on the girls' achievement and participation. If this proved successful consideration would be given to committing all science classes to the scheme.

The disadvantages and advantages of each of these alternative strategies were discussed by the science staff before it was decided upon the "girls only" approach.

A change in curriculum would need to be extensive (from Years 7 to 10) and it was perceived that changing curricula at Years 9 and 10 for girls only may be viewed as a "soft option".

Altering teaching practice by making teachers more aware of classroom dynamics does not necessarily change teacher attitude and expectations. It is also difficult to change entrenched teaching strategies.

Another reason why the third approach suited this school was because the female/male ratio within the school as shown in high. Therefore no "all boys" classes were created. This also caused minimal disruption to school structure, administration and staff.

THE PROCESS

Once the Science Faculty had decided that the approach of "girls only" science classes at Years 9 and 10 for two years was feasible the processes of gaining support from the school and the school community were commenced. Table 2 gives an indication of the steps undertaken to implement the pilot project of "girls only" classes at Years 9 and 10 for 1987/88.

1.	Informal discussion between proposers.
2.	Research of available data.
3.	Inform appropriate committees, i.e., science staff initially.
4.	Organise publicity material within the school community and the wider media.
5.	It was proposed that the girls' classes would run in Years 9 and 10 with two all girls' classes in each.
6.	Time line of requirements
7.	Submission to curriculum committee. (March 1986)
8.	School co-ordinator ratified the fact that the proposal could be time-tabled.
9.	Report back to Curriculum Committee, approval was granted and referred to Education sub-committee (school council).
10.	Presentation to Education sub-committee.
11.	Presentation to School Council.
12.	Publicity to school and local community, including a "Careers Information Evening" for parents.
13.	Evaluation – it was considered appropriate to seek outside assistance with the evaluation of the project.
14.	Promotion of science to girls when selecting subjects for the following year.
15.	Selection of girls into classes:
	i) student volunteers
	ii) parents volunteer students
	iii) teachers select suitable students by consultation with other teachers and students where possible.
16.	Balancing of mixed classes so that student male/female ratios would be relatively even.
17.	Staff selection to take "girls only" classes. Staff were asked if they were willing to take these classes.

Several aspects of the implementation process demand further explanation.

Firstly the publicity of the project both within the school and its community as well as the broader local community was a considered decision as well as the broader local community was a considered decision of the school in an attempt to ensure that what was being attempted at the school, although unusual, was not reactionary or revolutionary. In fact the school might gain from the whole project. Articles were produced for the local newspaper, school newsletter, Maroondah Equal Opportunity Centre, Ms Muffett and the Victorian Secondary Teachers' Association. The science co-ordinator and teachers also promoted science generally within the school.

Secondly, without proper evaluation the results of the project would not be valid. The school was also mindful that teachers do not have the time nor expertise to properly evaluate such a project. The organisations approached to carry out the evaluation were:
i) McClintock Collective
ii) Schools Commission
iii) Curriculum Branch of the Ministry of Education (Research and Development)
iv) Participation and Equity Program within the Ministry of Education
v) Monash University Education Faculty. (Approached Schools Commission for projects of National Significance – this unfortunately was rejected). Monash University Faculty was the only group willing to commit themselves and take responsibility for the evaluation of the project. The school was specific about when the evaluation should be carried out, the content of surveys used and the type of information to be gathered. (Schools are also constrained by the type of surveys which can be given to students.)

PROBLEMS

This project is not a research project established by a researcher from a higher education institution. It more appropriately should be seen as "Action Research" or "Teachers as Researchers". Consequently, the vagaries of the day life of a school have affected the project in a number of ways. Table 3 gives an outline of the main problems.

TABLE 3
PROBLEMS OF IMPLEMENTATION

1. 1986 Science co-ordinator took long service leave early in 1987 and was transferred to another school.
2. Insufficient girls volunteering for girls only class.
3. One Year 10 Home group disbanded due to staffing problems.
4. Selection of teachers for girls only classes.
5. Time-tableing constraints – was overcome relatively easily by grouping four classes of science together.
6. Staff changes during the year.
7. Publicity of the project during 1987.
8. Unexpected outcomes.

Several of these problems, in hind-sight, could have been anticipated, however in the hurly burly of the day to day activities of a school things get overlooked. For instance, the staffing of the "girls only" classes was two female teachers at Year 9 and two male teachers at Year 10. It would have been preferable to have had one male/one female teacher at each level.
The disbanding of one of the Year 10 Home groups means that several girls were forced into the "girls only" science groups.

The publicity that the project has drawn has unfortunately made several classes of "girls only" science "feel" very different, because they are the group that have been photographed and talked to. This of course was not the aim of the school.

Finally, a comment should be made about one of the unexpected outcomes of the project, and that is, staffing of excursions. There are two unfortunate, but not insurmountable problems for excursions:

1. When the Home group goes on an excursion teachers are not necessarily released; and
2. a male teacher of the "girls only" class must be accompanied by a female teacher.

CONCLUSION

At present the evaluation team is about to collect information following the first 4-6 months of the project, so there is very little to report from this point of view. However, as a school-based attempt to offset the discrimination of girls in science, the project is progressing with very little interference from and to the school. It is hoped that there will be some concrete changes in subject and career choices, as well as attitudes toward science by the girls in the project due to the efforts of the science staff.
GUIDELINES FOR AUTHORS OF PAPERS FOR RESEARCH IN SCIENCE EDUCATION

The following requirements have been established to facilitate editing and maintain standards in format and presentation.

GENERAL LAY-OUT AND LENGTH

Setting out: The paper (including diagrams, tables, etc.) is to be typed on A4 sized paper, using double-spacing with wide margins - at least 2.5 cms on the left and 1.4 cms on the right. (Note that these margins are to be left on all pages, including those containing tables, diagrams, etc.)

Length: The total length of any one paper must not exceed twelve A4 double-spaced typed pages (this length includes text of the paper, reference lists, and all diagrams, figures, and tables).

Figures: Camera-ready copies must be supplied with the paper.

Headings: Main headings (central and in capitals) and sub-headings (underlined and left-justified) should be used at reasonable intervals to aid in the reader's comprehension of the text. All pages should be numbered consecutively.

FOOTNOTES AND REFERENCES

Footnotes: These should not be used although Reference Notes, e.g., Smith (Note 1) may be used to refer to unpublished material. The reference notes are to be collated at the end of the paper, e.g.,

Note 1, J.J. Smith, personal communication

References: References to journals and books should follow the criteria of the A.P.A. In the general text of the paper references should appear as Bernstein (1971) or Fisher and Fraser (1983), then these references should be placed in the reference list as,

* Please note the order of dates, volume number, publisher, place of publication for books and journals, use of upper- and lower-case letters.
AMES, Catherine
BAILEY, John
BAIRD, John
BELL, Beverley
BEASLEY, Warren
BUTLER, Jim
BUTTS, Bill
CARR, Malcolm
CROSS, Roger
DAWSON, Chris.
EDWARDS, John
FANNIS, Rod
FENSHAM, Peter
FRANCIS, Rod
GARRARD, Jan
GRAY, Robin
GUNSTONE, Richard
HAPPS, John
HAYES, Dorothy
HILL, Doug.
JOHNSON, Barbara
KIRKWOOD, Valda
LOWE, Richard
LYNCH, Paddy
MADDOCK, Max
MITCHELL, Ian
NEWMAN, Barry
NORTHFIELD, Jeff
NUSIRJAN
PRICE, Ronald
RITCHIE, Steve
NOWELL, Jack
SAMPSON, Shirley
SKAMP, Keith
STRUBE, Paul
SYMINGTON, David
TREAGUST, David
WEBB, Paul
WHITE, Richard

Faculty of Education, Monash University.

Faculty of Education, Monash University.
P.O. Box 3206, Wellington, N.Z.

University of Queensland, St. Lucia.

University of Queensland, St. Lucia.

School of Education, Macquarie University.

S.E.R.U. University of Waikato, Hamilton, N.Z.

School of Education, La Trobe University.

Dept. of Education, University of Adelaide.

University of Queensland, St. Lucia.

Faculty of Education, University of Melbourne.

Faculty of Education, Monash University.

Faculty of Education, Monash University.

Faculty of Education, Monash University.

Faculty of Education, Monash University.

W.A. C.A.E. (Churchlands Campus), Doubleview, W.A.

Malvern Primary School, 27 Tooronga Rd., Malvern. 3144.

Inst. of Catholic Education, Christ Campus, Oakleigh. 3168.

S.E.R.U. University of Waikato, Hamilton, N.Z.

School of Education, Murdoch University, W.A.

Faculty of Education, University of Tasmania, Hobart.

Department of Education, University of Newcastle.

Faculty of Education, Monash University.

School of Education, University of N.S.W., Kensington.

Faculty of Education, Monash University.
c/- Faculty of Education, Monash University.

School of Education, La Trobe University.

Science Dept., Brisbane C.A.E., Kelvin Grove.

Department of Education, University of Adelaide.

Faculty of Education, Monash University.

Northern Rivers C.A.E., Lismore, N.S.W.

Underdale Campus, S.A. C.A.E., Underdale.

Victoria College, Toorak Campus, Malvern. 3144.

Curtin University of Technology, Perth.

Centre for Continuing Education, University of Port Elizabeth, South Africa.

Faculty of Education, Monash University.
RESEARCH IN SCIENCE EDUCATION

Volume 18

Selections of refereed papers from the Nineteenth Annual Conference of the Australian Science Education Research Association held in Sydney, New South Wales, July 1988.

EDITED BY: Richard P. Tisher Monash University

EDITORIAL BOARD: John Baird Monash University
Warren Beasley University of Queensland
Roger Cross LaTrobe University
John Happs Western Australian College of Advanced Education
Brendan Schollum Auckland College of Advanced Education
Richard Trembath Chisholm Institute

BUSINESS MANAGER: Richard T. White Monash University

AUSTRALIAN SCIENCE EDUCATION RESEARCH ASSOCIATION

All general correspondence concerning this publication should be addressed to Professor Richard P. Tisher, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.

Subscriptions and other orders to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, 3168, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial Comments</td>
<td>(vi)</td>
</tr>
<tr>
<td>C. Kirk Developing professional skills in chemistry</td>
<td>1</td>
</tr>
<tr>
<td>R. Lazarowitz, & O. Meir High school students' questions in biology: Cognitive levels and content themes</td>
<td>9</td>
</tr>
<tr>
<td>N. Cranston, & R. McAllister Pupils' learning of science in primary schools: A system-level investigation</td>
<td>22</td>
</tr>
<tr>
<td>C. Gauld The "Pupil-as-Scientist" metaphor in scientific education</td>
<td>35</td>
</tr>
<tr>
<td>J. Edwards, J. Stewart & S. Ashton Producing and choosing chemistry texts - There are better ways</td>
<td>42</td>
</tr>
<tr>
<td>B.M. Hand & D.F. Treagust Application of a conceptual conflict teaching strategy to enhance student learning of acids and bases</td>
<td>53</td>
</tr>
<tr>
<td>R. Ross, J. Hills & J. Baird et. al. Enhancing Teaching Expertise: A case study of the process of change</td>
<td>64</td>
</tr>
<tr>
<td>K. Skamp Preserve primary teacher education in NSW: A comparative analysis of espoused science education curricula</td>
<td>71</td>
</tr>
<tr>
<td>J.A. Clarke Classroom dialogue & science achievement</td>
<td>83</td>
</tr>
<tr>
<td>V. Kirkwood & M. Carr A most valuable growing exercise</td>
<td>95</td>
</tr>
<tr>
<td>D. Hayes & D. Symington Purposes achieved by drawing during science activities</td>
<td>104</td>
</tr>
<tr>
<td>R. Lowe Reading scientific diagrams: characterising components of skilled performance</td>
<td>112</td>
</tr>
</tbody>
</table>
G. Dall 'Alba
Cognitive learning strategies and outcomes in a heat transfer experiment

P.P. Lynch, & T. Shadbolt
Problem solving and the video practical: The Iron Wool/Acetic Acid Experiment

J.A. Rowell & C.J. Dawson
What's in a solution? A look at logic and belief in problem solving

R.T. Cross & R.F. Price
J.D. Bernal and Science Education: A tribute to the 50th anniversary of the publication of “The Social Function of Science”

R. Tytler
Case studies of student research projects in school science

Kam-Wah Lee
Two non-traditional measures of chemistry learning: word association and idea association

J. Butler & W. Beasley
Teacher Classroom Management Styles with beginning high school students

R. Duit & S. Kesidou
Students' understanding of basic ideas of the Second Law of Thermodynamics

D. Treagust, M. Leggett, P. Glasson & B. Wilkinson
Instant use of evidence from collaborative research about physics teaching

M. Rosier
Results from the Second International Science Study: Some sex differences for Australian 14-year-old students

T. Fetherstonhaugh & J. Happs
Countering fundamental misconceptions about light

B. Newman, M. Cosgrove & M. Forret
Being cool in the Cool Unit or evaluating the learning of refrigeration from scratch
B.J. Fraser & L.J. Rennie
Learning in Science: Qualitative and quantitative investigation in Year 10 classrooms

J. Northfield
School experience in preservice education:
Examining some assumptions

R.A. Schibeci
Adult scientific and technological literacy:
A review

M.R. Matthews
Ernst Mach and Thought Experiments in Science Education

P.P. Lynch & P. Webb
Linking the aims of practical work to assessment procedures in teaching situations

R. Fawns
The cultural roots of school biology in Australia - From vitalism and mechanism to dialectic materialism

S. Muralidhar
Solid water is denser than liquid water: Students' experiences of science lessons in Fiji

B. Schollum
Helping students learn in chemistry

D. Hill
Misleading Illustrations

B. Boeha
Some students' beliefs in mechanics - A Third World viewpoint
EDITORIAL COMMENTS

In the last issue of Research in Science Education readers of the journal were invited to comment about the mix of descriptive and investigatory papers included in Volume 17. As no comments were received the editorial committee assumed either that no one reads the preface to an issue, or that readers do not object to the variety in the papers. If the latter is the case then readers will be even more pleased this year to see the greater diversity in the matters addressed. Certainly research on students' misconceptions still predominates, but research in science education appears to be in a healthy state as there are people directing our attention to other important areas including classroom processes, professional development, scientific literacy in adults and the history of scientific ideas.

Richard P. Tisher

Editor
<table>
<thead>
<tr>
<th>Author</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butler, J.</td>
<td>Department of Education</td>
</tr>
<tr>
<td></td>
<td>University of Queensland</td>
</tr>
<tr>
<td></td>
<td>St. Lucia, Q'ld. 4061</td>
</tr>
<tr>
<td>Clarke, J.A.</td>
<td>Psychology Department</td>
</tr>
<tr>
<td></td>
<td>Kelvin Grove Campus</td>
</tr>
<tr>
<td></td>
<td>Brisbane C.A.E.</td>
</tr>
<tr>
<td></td>
<td>Locked Bag No. 2</td>
</tr>
<tr>
<td></td>
<td>Kelvin Grove Q’ld. 4059</td>
</tr>
<tr>
<td>Cranston, N.</td>
<td>Research Services Branch</td>
</tr>
<tr>
<td></td>
<td>Department of Education, P.O.</td>
</tr>
<tr>
<td></td>
<td>Box 33</td>
</tr>
<tr>
<td></td>
<td>North Quay. 4002</td>
</tr>
<tr>
<td>Cross, R.T.</td>
<td>Centre for Comparative & International Studies</td>
</tr>
<tr>
<td></td>
<td>La Trobe University</td>
</tr>
<tr>
<td></td>
<td>Bundoora 3083</td>
</tr>
<tr>
<td>Dall’Alba, G.</td>
<td>Centre for the Study of Higher Education</td>
</tr>
<tr>
<td></td>
<td>University of Melbourne</td>
</tr>
<tr>
<td></td>
<td>Parkville 3052</td>
</tr>
<tr>
<td>Duit, R.</td>
<td>Institute for Science Education</td>
</tr>
<tr>
<td></td>
<td>University of Kiel</td>
</tr>
<tr>
<td></td>
<td>Olshausenstrasse 62</td>
</tr>
<tr>
<td></td>
<td>D-2300</td>
</tr>
<tr>
<td></td>
<td>Kiel 1</td>
</tr>
<tr>
<td></td>
<td>Fed. Repub. of Germany</td>
</tr>
<tr>
<td>Edwards, J.</td>
<td>Department of Education</td>
</tr>
<tr>
<td></td>
<td>James Cook University</td>
</tr>
<tr>
<td></td>
<td>Townsville</td>
</tr>
<tr>
<td></td>
<td>North Q’ld. 4810</td>
</tr>
<tr>
<td>Fawns, R.</td>
<td>Department of Education</td>
</tr>
<tr>
<td></td>
<td>University of Melbourne</td>
</tr>
<tr>
<td></td>
<td>Parkville 3052</td>
</tr>
</tbody>
</table>
Fetherstonhaugh, T. Curtin University
G.P.O. Box U 1987
Perth W.A.

Fraser, B.J. Curtin University
G.P.O. Box U 1987
Perth W.A.

Gauld, C. The University of N.S.W.
P.O. Box 1
Kensington N.S.W. 2033

Hand, B.M. Curtin University
G.P.O. Box U 1987
Perth W.A.

Hayes, D. c/- D. Symington
Victoria College
Burwood Campus, Vic.

Hill, D. Riverina-Murray Institute of Higher Education
P.O. Box 588
Wagga Wagga N.S.W. 2650

Kirk, C. University of Waikato
Private Bag
Hamilton N.Z.

Kirkwood, V. University of Waikato
Private Bag
Hamilton N.Z.

Lazarowitz, r. c/- Science & Mathematics Education Centre
Curtin University
G.P.O. Box U 1987
Perth W.A.

Lee, Kam-Wah 84 Lemont Street
Mt. Waverley, Vic 3149
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowe, R.</td>
<td>School of Education</td>
</tr>
<tr>
<td></td>
<td>Murdoch University</td>
</tr>
<tr>
<td></td>
<td>Murdoch W.A. 6150</td>
</tr>
<tr>
<td>Lynch, P.</td>
<td>University of Tasmania</td>
</tr>
<tr>
<td></td>
<td>G.P.O. Box 2510 C</td>
</tr>
<tr>
<td></td>
<td>Hobart Tas</td>
</tr>
<tr>
<td>Matthews, M.R.</td>
<td>University of N.S.W.</td>
</tr>
<tr>
<td></td>
<td>School of Education</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1</td>
</tr>
<tr>
<td></td>
<td>Kensington N.S.W. 2033</td>
</tr>
<tr>
<td>Muralidhar, S.</td>
<td>C/- Faculty of Education</td>
</tr>
<tr>
<td></td>
<td>Monash University</td>
</tr>
<tr>
<td></td>
<td>Clayton 3168</td>
</tr>
<tr>
<td>Newman, B.</td>
<td>School of Education</td>
</tr>
<tr>
<td></td>
<td>University of N.S.W.</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1</td>
</tr>
<tr>
<td></td>
<td>Kensington N.S.W.</td>
</tr>
<tr>
<td>Northfield, J.</td>
<td>Faculty of Education</td>
</tr>
<tr>
<td></td>
<td>Monash University</td>
</tr>
<tr>
<td></td>
<td>Clayton 3168</td>
</tr>
<tr>
<td>Rosier, M.</td>
<td>ACER</td>
</tr>
<tr>
<td></td>
<td>G.P.O. Box 210</td>
</tr>
<tr>
<td></td>
<td>Hawthorn 3122</td>
</tr>
<tr>
<td>Ross, R.</td>
<td>c/- John Baird</td>
</tr>
<tr>
<td></td>
<td>Faculty of Education</td>
</tr>
<tr>
<td></td>
<td>Monash University</td>
</tr>
<tr>
<td></td>
<td>Clayton 3168</td>
</tr>
<tr>
<td>Rowell, J.A.</td>
<td>University of Adelaide</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 498</td>
</tr>
<tr>
<td></td>
<td>Adelaide S.A. 5011</td>
</tr>
</tbody>
</table>
Schibeci, R.A.
School of Education
Murdoch University
Murdoch W.A. 6150

Schollum, B.
Auckland College of Education
74 Epsom Avenue
Epsom Auckland N.Z.

Skamp, K.
Northern Rivers C.A.E.
P.O. Box 157
Lismore 2480

Treasgust, D.
Curtin University
G.P.O. Box U 1987
Perth W.A.

Tytler, R.
Victoria College,
Toorak Campus
Glenferrie Road
Malvern 3144
Research In Science Education

Volume 19
1989

Annual publication of the Australian Science Education Research Association
Research in Science Education

Annual publication of the Australian Science Education Research Association

Selected refereed papers from the Twentieth Annual Conference of the Australian Science Education Research Association, held at the Frankston campus of the Chisholm Institute of Technology, Victoria, July 1989.

ACTING EDITOR: Paul L. Gardner Monash University
EDITORIAL BOARD: Beverley Bell University of Waikato, N.Z.
Roger Cross La Trobe University
Marilyn Fleer University of Canberra
Geoff Giddings Curtin University of Technology
Michael Matthews University of N.S.W.
Keith Stead Learning Performance Seminars
Richard Trebath Chisholm Institute of Technology

BUSINESS MANAGER: Richard White Monash University
WORD-PROCESSING: Carol Keddie Monash University

General correspondence about this publication should be addressed to Dr. Paul Gardner, Faculty of Education, Monash University, Clayton, Victoria, Australia 3168.

Subscriptions and orders should be sent to the Business Manager, Professor Richard T. White, Faculty of Education, Monash University, Clayton, Victoria, Australia 3168.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial comments</td>
<td>(vi)</td>
</tr>
<tr>
<td>Guidelines for authors</td>
<td>(vii)</td>
</tr>
<tr>
<td>Addresses of authors</td>
<td>(ix)</td>
</tr>
<tr>
<td>P.F. Andrew, J.M. Owen, & R.E. Hurworth</td>
<td>1</td>
</tr>
<tr>
<td>Increasing participation in science mathematics and technology education: Hats off to CAPS?</td>
<td></td>
</tr>
<tr>
<td>K. Appleton</td>
<td>13</td>
</tr>
<tr>
<td>A learning model for science education</td>
<td></td>
</tr>
<tr>
<td>H.H. Birnie</td>
<td>25</td>
</tr>
<tr>
<td>The alternative conceptions of a particle theory of air possessed by year 1-5 primary students, their parents, and their teachers</td>
<td></td>
</tr>
<tr>
<td>W. Bucat, & G. Williams</td>
<td>37</td>
</tr>
<tr>
<td>Student note-taking in chemistry lectures</td>
<td></td>
</tr>
<tr>
<td>R.T. Cross, & R.F. Price</td>
<td>47</td>
</tr>
<tr>
<td>Science education in the long shadow of Michael Polanyi</td>
<td></td>
</tr>
<tr>
<td>G. Dall’Alba, E. Walsh, J. Bowden, E. Martin, F. Marton, G. Masters, P. Ramsden, & A. Stephanou</td>
<td>57</td>
</tr>
<tr>
<td>Assessing understanding: A phenomenographic approach</td>
<td></td>
</tr>
<tr>
<td>J.A. Clarke, & B.C. Dart</td>
<td>67</td>
</tr>
<tr>
<td>Target students in year 8 science classrooms: A comparison with and extension of existing research</td>
<td></td>
</tr>
<tr>
<td>R. Fawns</td>
<td>76</td>
</tr>
<tr>
<td>"Coping with the modern world." The context and the debate at the Australian Science Education Project Guidelines Conference 1970</td>
<td></td>
</tr>
</tbody>
</table>
H.J. Fearn-Wannan
Education and science - the state of the union 86

M. Finegold, & R. Trumper
Categorizing pupils’ explanatory frameworks in energy as a means to the development of a teaching approach 97

An account of action research investigating teacher change 112

G.J. Giddings, and B.J. Fraser
Development of an instrument for assessing the psychosocial environment of science laboratory classes 123

B. Hand
Student understandings of acids and bases: A two year study 133

D. Hayes, & D. Symington
Techniques used by primary school pupils in drawings during science activities 145

O.J. Jegede, & B.J. Fraser
Influence of socio-cultural factors on secondary school students’ attitude towards science 155

A.J. Jones, & C.M. Kirk
Teaching technological applications in the physics classroom 164

V. Kirkwood, M. Bearlin, & T. Hardy
New approaches to the inservice education in science and technology of primary and early childhood teachers (or Mum is not dumb after all 174

M.R. Matthews
Galileo and pendulum motion: A case for history and philosophy in the science classroom 187

(iv)
I. Mitchell
The influence of class dynamics on individual learning 198

W.P. Palmer
Gold mining in Papua New Guinea: A curricular omission? 210

L.F. Rennie, and D.F. Treagust
Measuring students' attitudes and perceptions about technology: A multidimensional concept 221

P. Rice
Thai conceptions of illness 231

R.A. Schibeci
Desperately seeking science (and technology?) 241

A.W. Scott
Inservice for elementary teachers in science education - some directions for the future 249

K. Skamp
General Science knowledge and attitudes towards science and science teaching of pre-service primary teachers: Implications for pre-service units 257

B. Stanbridge
Some classroom applications of current ideas on conceptual learning in science 268

D. Symington, & D. Hayes
What do you need to know to teach science in the primary school? 278

I. Torrie
Developing achievement-based assessment using grade related criteria 286

D. Treagust, R. Duit, I. Lindauer, & P. Joslin
Teachers' use of analogies in their regular teaching routines 291

R.J. Werry
Meaning and values from science texts 300

(v)
EDITORIAL COMMENT

This issue of Research in Science Education once again demonstrates the rich range of science education research currently being undertaken in Australia. The topics under investigation are diverse. Several studies focus on the learning of science concepts, while others are concerned with the study of teacher behaviour, the evaluation of government initiatives, the philosophy of science, in-service teacher education, and many other issues. The papers also reflect a wide variety of research methods: the historical analysis of scholarly writings, naturalistic observations of teachers and learners and interviews to reveal learners' conceptual structures are all represented here. The scope is broad: although, for understandable reasons, research on secondary school science remains dominant, it is good to see increasing attention being given to primary and tertiary science education. And there is a good geographic mix: in addition to the many contributions from various states, there are papers relating to education in Nigeria, Israel, Thailand, Papua New Guinea and New Zealand.

As I write these words, the Australian Science Education Research Association is celebrating its 20th anniversary. In May, 1970, after several months of preliminary work by Peter Fensham, Dick White and other colleagues at Monash, the first ASERA conference was held at Monash University. The subsequent history of the organisation has been remarkable. We have no formal membership procedure, no annual subscription, no formal election of office-bearers. What we do have is a healthy professional association, a lively and well-attended annual conference, and a quality journal which makes a respected contribution to the international science education research community.

The first two issues of this journal were named Research 1971 and Research 1972; the next issue was named Science Education Research 1973. The founding editor was Dick Tisher, then at the University of Queensland. In the preface to the first issue -- inserted as a loose erratum sheet as it had been omitted from the bound copy! -- Dick wrote that it was

part of an embryonic project. A dream is that one day there will be an Australian journal reporting exclusively on research projects in science education. Hopefully, this present collection of papers is a precursor of a journal of research in science education.

Prophetic use of language. The dream was fulfilled, word for word, in 1974, when Research in Science Education was adopted as the permanent name for this journal. In that year, Dick took up a chair at Monash and subsequently relinquished the editorship, but he accepted it again after our first New Zealand conference, in 1983. Dick has done much of the editorial work for this issue. (My contribution has been limited to proof-reading the final copy and seeing it through to publication.) This is an appropriate time to express our appreciation to him as he leaves Monash to become head of the Victorian Curriculum and Assessment Board. His new position will be a challenging one; he takes it up at a time of public controversy over assessment methods for the new Victorian Certificate of Education. We thank him for his work in founding this journal, and wish him well in his new appointment.

Paul Gardner,
Acting Editor.
GUIDELINES FOR AUTHORS FOR THE PREPARATION OF
PAPERS AND DISKS FOR RESEARCH IN SCIENCE EDUCATION

SUBMISSION TO CONFERENCE ORGANISERS

Hard copies only are required for submission to the conference organisers. Setting out can be in the same format as required for publication, or in some other format if you prefer.

SUBMISSION TO EDITOR FOR PUBLICATION IN RISE

Papers submitted to the editor for publication in RISE should be on disk, with three hard copies. See Word Processing and Setting Out below. If it is impossible for you to provide a disk copy in the format requested, please advise the editor.

Word Processing

The preferred software is WordPerfect, but WordStar and Multimate are also acceptable.

WordPerfect, WordStar and Multimate all have automatic wrap around. Please do not use hard returns except for new paragraphs, headings, etc. The use of hard returns at the end of normal lines creates problems.

N.B. It is the primary responsibility of authors to ensure that copy has been thoroughly proof read. Please ensure that typographical errors have been corrected, and that there is agreement between the references in the text and the final reference list.

Setting Out

Format - Please set your format at 80 characters per line, single spacing (a change from previous issues), right justified. Page number centred at top followed by one blank line and 56 lines of text. (To make your own hard copy of this, you will need a small print font.)

Length - Each paper is to have a maximum length of 9 pages. This length includes text, reference list and pages containing diagrams, figures and tables.

Title - Article title in capitals, author(s) in lower case, affiliated institution in lower case, all centred.

Abstract - Include an abstract of between 100-200 words, indented, immediately following the heading.

Tables - Tables should be given arabic numbers, with centred, capital headings:

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRELATIONS BETWEEN ANXIETY AND RUNNING SPEED</td>
</tr>
<tr>
<td>Simple tables should be incorporated directly into the word-processed text. Complex tables which cannot be treated in this way should be supplied separately as camera-ready copy, with appropriate space left in the body of the text.</td>
</tr>
<tr>
<td>(vii)</td>
</tr>
</tbody>
</table>
Figures - Figures should be supplied as camera-ready copy. Try to ensure good quality copy; dot-matrix graphics printed in pale-grey ink often reproduce poorly! Figure descriptions should be below the figure:

Fig. 3 A model of the learning process

Headings - Main headings should appear in CAPITALS in the centre of the page. Sub-headings should be in lower case, underlined, and left-justified. They should be used at regular intervals to assist in the reader's comprehension of the text.

Pagination - All pages are to be numbered consecutively.

Reference notes - Footnotes are not to be used. For all notes (including references to unpublished material, personal communications, etc.) use the following system:

Arguments advanced by Smith (Note 1) ...

REFERENCE NOTES (prior to REFERENCES)

References - References to journals and books should follow the criteria laid down by the APA. In the body of the paper references should appear, for example, as Bernstein (1971), or Fisher and Fraser (1983). These references should be placed in the reference list as follows:

Please note:

* author's name in CAPITALS
* lower case for article or book titles
* upper case initials for journal titles, underlined
* volume number of journal underlined
* book titles underlined
* city of publication followed by publisher
* two-space indentation below each author

Author(s) - At the end of the paper, include a brief note in the following form:

AUTHOR

MR MARY SMITH, Senior Lecturer, Faculty of Education, University of Central Australia, Alice Springs, NT 0870.
Specializations: biotechnology curriculum development, biology teacher education.

Acting Editor: Dr P.L. Gardner, Faculty of Education, Monash University, Clayton, Victoria, Australia 3168.
ADDRESSES OF AUTHORS

Adcock, H. C/- Prof. M. Carr
 University of Waikato
 Hamilton NEW ZEALAND

Andrew, P.F. Institute of Education
 University of Melbourne
 PARKVILLE VIC 3052

Appleton, K. University College of Central
 Queensland
 ROCKHAMPTON QLD 4700

Bearlin, M. Canberra CAE
 PO Box 1
 BELCONNEN ACT 2616

Birnie, H.H. University of Saskatchewan
 Saskatoon
 CANADA S7N 0WO

Bowden, J. C/- Dr G. Dall' alba
 University of Melbourne
 PARKVILLE VIC 3052

Bucat, W. School of Chemistry
 University of Western Australia
 MELBOURNE VIC 3052

Carr, M. University of Waikato
 Hamilton NEW ZEALAND

Clarke, J.A. Brisbane CAE
 Victoria Park Road
 KELVIN GROVE QLD 4069

Cross, R.T. School of Education
 La Trobe University
 BUNDOORA VIC 3083

Dall'alba, G. University of Melbourne
 PARKVILLE VIC 3052

Dart, B.C. Brisbane CAE
 Victoria Park Road
 KELVIN GROVE QLD 4069

Duit, R. Institute for Science Education
 University of Kiel
 Kiel WEST GERMANY

Fawns, R. Institute of Education
 University of Melbourne
 PARKVILLE VIC 3052
Fearn-Wannan, H.J.
15 Carawatha Road
DONCASTER VIC 3108

Finegold, M.
Israel Institute of Technology
Technion City
Haifa ISRAEL 3200

Fraser, B.J.
Curtin University of Technology
PO Box 1987 PERTH WA 6001

Gao, L.
C/- Prof. M. Carr
University of Waikato
Hamilton NEW ZEALAND

Giddings, G.J.
Curtin University of Technology
PO Box 1987 PERTH WA 6001

Hand, B.
Bendigo CAE
PO Box 199 BENDIGO VIC 3550

Hardy, T.
Canberra CAE
PO Box I BELCONNEN ACT 2616

Hayes, D.
Malvern Primary School
27 Tooronga Road
MALVERN VIC 3144

Hume, A.
C/- Prof. M. Carr
University of Waikato
Hamilton NEW ZEALAND

Hurworth, R.E.
Institute of Education
University of Melbourne
PARKVILLE VIC 3052

Jegede, O.J.
Curtin University of Technology
PO Box 1987 PERTH WA 6001

Jones, A.J.
University of Waikato
Hamilton NEW ZEALAND

Joslin, P.
Drake University
Des Moines, Iowa U.S.A.

Kirk, C.M.
University of Waikato
Hamilton NEW ZEALAND

Kirkwood, V.
University of Waikato
Hamilton NEW ZEALAND

Lindauer, I.
University of Northern Colorado
Greeley, Colorado U.S.A.

Martin, E.
C/- Dr G. Dall’alba
University of Melbourne
PARKVILLE VIC 3052

(x)
Marton, F. C/- Dr. G. Dall' alba
University of Melbourne
PARKVILLE VIC 3052

Masters, G. C/- Dr. G. Dall' alba
University of Melbourne
PARKVILLE VIC 3052

Matthews, M.R. University of New South Wales
PO Box 1 KENSINGTON NSW 2033

Mitchell, I. Faculty of Education
Monash University
CLAYTON VIC 3168

Nicholson, D. University of Waikato
Hamilton NEW ZEALAND

Owen, J.M. Institute of Education
University of Melbourne
PARKVILLE VIC 3052

Palmer, W.P. Northern Territory University
PO Box 40146
CASUARINA NT 0811

Price, R.F. School of Education
La Trobe University
BUNDOORA VIC 3083

Ramsden, P. C/- Dr G. Dall' alba
University of Melbourne
PARKVILLE VIC 3052

Rennie, L.F. Curtin University of Technology
GPO BOX U1987 PERTH WA 6001

Rice, P. Victorian Transcultural
Psychiatry Unit
Health Department of Victoria
Park Street
PARKVILLE VIC 3052

Schibeci, R.A. School of Education
Murdoch University
MURDOCH WA 6150

Scott, A.W. Centre for Science Maths &
Computer Education
University of New England
ARMIDALE NSW 2350

Silvester, J. C/- Prof. M. Carr
University of Waikato
Hamilton NEW ZEALAND
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skamp, K.</td>
<td>Northern Rivers CAE</td>
</tr>
<tr>
<td></td>
<td>PO Box 157</td>
</tr>
<tr>
<td></td>
<td>LISMORE NSW 2480</td>
</tr>
<tr>
<td>Smith, D.</td>
<td>C/- Prof. M. Carr</td>
</tr>
<tr>
<td></td>
<td>University of Waikato</td>
</tr>
<tr>
<td></td>
<td>Hamilton NEW ZEALAND</td>
</tr>
<tr>
<td>Stanbridge, B.</td>
<td>51 Sheehy Road</td>
</tr>
<tr>
<td></td>
<td>WHITEROCK QLD 4871</td>
</tr>
<tr>
<td>Stephanou, A.</td>
<td>c/- Dr G. Dall'alba</td>
</tr>
<tr>
<td></td>
<td>University of Melbourne</td>
</tr>
<tr>
<td></td>
<td>PARKVILLE VIC 3052</td>
</tr>
<tr>
<td>Symington, D.</td>
<td>Victoria College</td>
</tr>
<tr>
<td></td>
<td>Burwood Highway</td>
</tr>
<tr>
<td></td>
<td>BURWOOD VIC 3125</td>
</tr>
<tr>
<td>Torrie, I.</td>
<td>Waikato University</td>
</tr>
<tr>
<td></td>
<td>Hamilton NEW ZEALAND</td>
</tr>
<tr>
<td>Tregust, D.F.</td>
<td>Curtin University of Technology</td>
</tr>
<tr>
<td></td>
<td>GPO BOX U1987</td>
</tr>
<tr>
<td></td>
<td>PERTH WA 6001</td>
</tr>
<tr>
<td>Trumper, R.</td>
<td>C/- Dr M. Finegold</td>
</tr>
<tr>
<td></td>
<td>Israel Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Technion City</td>
</tr>
<tr>
<td></td>
<td>Haifa 32000 ISRAEL</td>
</tr>
<tr>
<td>Walsh, E.</td>
<td>C/- Dr G. Dall'alba</td>
</tr>
<tr>
<td></td>
<td>University of Melbourne</td>
</tr>
<tr>
<td></td>
<td>PARKVILLE VIC 3052</td>
</tr>
<tr>
<td>Werry, R.J.</td>
<td>25 Chetwynd Street</td>
</tr>
<tr>
<td></td>
<td>WEST MELBOURNE VIC 3003</td>
</tr>
<tr>
<td>Williams, G.</td>
<td>C/- Dr W. Bucat</td>
</tr>
<tr>
<td></td>
<td>University of Western Australia</td>
</tr>
<tr>
<td></td>
<td>NEDLANDS WA 6009</td>
</tr>
</tbody>
</table>

(xii)
Research In Science Education

Volume 20

1990

Annual publication of the Australasian Science Education Research Association
Research In Science Education Volume 20 1990

Annual publication of the Australasian Science Education Research Association

Selected refereed papers from the Twenty-first Annual Conference of the Australasian Science Education Research Association, organised by the Science and Mathematics Education Centre, Curtin University of Technology, Perth, W. A., July 1990.

EDITOR

Dr. Paul L. Gardner, Faculty of Education, Monash University, Clayton, Vic. 3168.
General correspondence about this publication should be sent to this address.

BUSINESS MANAGER

Professor Richard T. White, Faculty of Education, Monash University, Clayton, Vic. 3168.
Subscriptions and orders should be sent to this address.

Copyright 1990 Australasian Science Education Research Association.
Published by Australasian Science Education Research Association.

ISSN 0157-244X
REVIEW PANEL
Editor: Paul Gardner, Monash University

John Baird, Monash University
*Beverley Bell, University of Waikato
*Mark Cosgrove, University of Technology, Sydney
*Roger Cross, Latrobe University
John Edwards, James Cook University
Peter Fensham, Monash University
*Marilyn Fleer, University of Canberra
#Helen Forgasz, Monash University
Barry Fraser, Curtin University of Technology
*Geoff Giddings, Curtin University of Technology
Richard Gunstone, Monash University
Christina Hart, Monash University
Lawrence Ingvarson, Monash University
Anne McDougall, Monash University
Sue McNamara, Monash University
Cam McRobbie, Queensland University of Technology
Cliff Malcolm, Ministry of Education, Victoria
Marjorie Martin, Victoria College
*Michael Matthews, University of New South Wales
Ian Mitchell, Monash University
*Ian Napper, South Australian College of Advanced Education
Jeff Northfield, Monash University
Neil Paget, Monash University
Malcolm Rosier, ACER
Glenn Rowley, Monash University
Shirley Sampson, Monash University
Renato Schibeci, Murdoch University
Terri Seddon, Monash University
Robin Small, Monash University
Robyn Stutchbury, University of New South Wales
David Symington, Victoria College
John Theobald
*Richard Trembath, Monash University
Leo West, Monash University
Richard White, Monash University
Robert Ziegler, Kent St. Senior High School, Perth

* Member of the Editorial Board
Assistant to the Editor

Word processing, technical assistance:
Gordon Perkins, Monash University

Word processing:
Carol Keddie, (papers) and Julie Gray (correspondence)
Monash University

Printing: Monash University Printery, Clayton, Victoria, Australia
CONTENTS

Editorial comments
Guidelines for authors

APPLETON, K. A learning model for science education: developing teaching strategies. 1

BAIRD, J. R., GUNSTONE, R. F., PENNA, C., FENSHAM, P. J. & WHITE, R. T. Researching balance between cognition and affect in science teaching and learning. 11

BEARLIN, M. Toward a gender-sensitive model of science teacher education for women primary and early childhood teachers. 21

BELL, B. F., KIRKWOOD, V. M. & PEARSON, J. D. Learning in Science Project (Teacher Development): the framework. 31

CARR, M. D. & KIRKWOOD, V. M. The pupil as philosopher 41

DAWSON, C. & ROWELL J. New data and prior belief: the two faces of scientific reasoning. 48

DUNNE, M. & RENNIE, L. The influence of gender, ethnicity and rurality upon perceptions of science. 57

EDWARDS, J. Rediscovering ignorance. 66

FAWNS, R. Practicalizing Piaget at the ASEP Guidelines Conference 1970. 75

FENSHAM, P. & WEST, L. The quality of teacher education programs: methodological and procedural issues for reviewers. 85

FERRER, L. M. Learning environment, learning styles and conceptual understanding. 95

FETHERSTONHAUGH, A. R. Misconceptions and light: a curriculum approach. 105

FLEER, M. Scaffolding conceptual change in early childhood. 114

GARDNER, P. L. The technology-science relationship: some curriculum implications. 124

HACKLING, M. W. & GARNETT, P. J. Year 12 students' attainment of scientific investigation skills. 134

HARDY, T., BEARLIN, M. & KIRKWOOD, V. Outcomes of the Primary and Early Childhood Science and Technology Education Project at the University of Canberra. 142

JANE, B. L. Australian Studies: a vehicle for scientific and technological literacy? 152

JONES, B. L. Developing a taxonomy of science concepts based on a scale of empirical distance. 161

KINNNEAR, J. F. & SIMMONS, P. E. "Expert" and "novice" subjects' approaches to genetic problem solving in a computer-based setting. 171
LOUDEN, W. & WALLACE, J. The constructivist paradox: teachers’ knowledge and constructivist science teaching.

LOWE, R. K. Diagram information and its organisation in memory: exploring the role of skill and experience.

McROBBIE, C. J., GIDDINGS, G. J. & FRASER, B. J. Research into the environment of science laboratory classes in Australian schools.

MAOR, D. Development of student inquiry skills in a computerised classroom environment.

NAPPER, I. & CRAWFORD, G. Focus folklore: reflections of focus teachers on the Sci-Tec In-service Project.

RITCHIE, S. M. & BUTLER J. Aboriginal studies and the science curriculum: affective outcomes from a curriculum intervention.

ROSIER, M. Effects of background and classroom characteristics on the science achievement of 10-year-old students.

SIMMONS, P. E., & KINNEAR, J. A research method using microcomputers to assess conceptual understanding and problem solving.

TREATAGUST, D. F. Integration of technology in the school curriculum.

WALSH, M. “What’s your science teacher like?” using students to appraise teaching and teachers.

YATES, S. & GOODRUM, D. How confident are primary school teachers in teaching science?

YOUNG, D. J. The investigation of school effects on student achievement in science: a multilevel analysis of educational data.

ZADNIK, M. G., SINGER, K. P., SIMPSON, I. A. & TREATAGUST, D. F. Evaluation of a course designed to teach physics to students of physiotherapy.

RESEARCH NOTES

SCHIBICI, R. A. Reading, ’riting and ’ithmetic: being literate in science and mathematics.

APPENDIX

EDITORIAL COMMENTS

"During the past two years informal meetings have been held by a group of persons engaged in research in science education. The ‘foundation’ meeting occurred at Monash University, Melbourne, in 1970, and the second conference was organised at Macquarie University, Sydney, in May 1971. At these last mentioned meetings, it was suggested that details of science education research should be disseminated more widely than had occurred in the past."

(Editor’s preface to Research 1971, the first ASERA publication.)

I was one of the people present at that foundation meeting at Monash twenty years ago, and so it is especially pleasing to be associated with this twentieth anniversary issue of Research in Science Education, as the publication became known in 1974. It appears at a time of renewed government interest in science (and mathematics and technology) education. When ASERA was founded, the federal government had been involved for some years in attempts to upgrade school science laboratories. It then began to support national curriculum projects, especially the Australian Science Education Project; Gregor Ramsay’s paper in that first ASERA publication presented an outline of ASEP’s formative evaluation procedures.

Later in that decade, national interest in science education began to wane. Recently, there has been a revival, reflected in the Prime Minister’s phrase that we must become a ‘clever country’. There is recognition that all is not well with science teacher education: that argument is elaborated in DEET’s three-volume Discipline Review of Teacher Education in Mathematics and Science (1989). The Prime Minister has established a Science Council, consisting of scientists, politicians and industrialists; for its second meeting, in May 1990, it commissioned a set of papers on science education, Science and Mathematics in the Formative Years. The Australian Education Council (i.e. the state and federal ministers of education) has initiated National Mapping Exercises in various school subjects in an attempt to encourage national curriculum co-ordination. One must hope that these promising developments will be properly supported by the resources needed to bring about substantial improvements in the quality of science education at classroom level.

This issue of RISE contains a record number of papers (35) and is of record size (352 pages). It maintains the tradition of earlier issues of demonstrating the wide range of issues of concern to science education researchers. There are also a number of changes, some large, some small. Most importantly, as a result of discussion at the 1990 conference in Perth, we have adopted a policy of submitting all papers to independent referees. I am very grateful to the many members of my Review Panel (p. ii) for their work; I know, from the many comments made by authors when submitting revised versions of their conference papers, that the panel’s efforts are appreciated. I am convinced that the policy has raised the quality of this publication. Less evident, but also important, is a technological breakthrough: this is the first issue wholly produced from floppy discs supplied by authors. I can now take an AppleMac
MSWord file on diskette, scan it for viruses, convert it to a text file, send it down a
cable to an IBM PC, read it on to a floppy disc, take it to my PC and convert it to
WPerfect, in about 15 minutes on a good day. (The editorial work takes a little
longer!)

Sharp observers will note the addition of two letters to our masthead: we are now the
Australasian Science Education Research Association, a move which formalises the close
links between Australian and New Zealand researchers which began when the late
Roger Osborne started coming to ASERA in 1977.

This issue contains an embryonic Research Notes section, with only one contribution
this time; for future issues, authors should feel free to submit brief descriptions of new
projects under way and summaries of papers whose length exceeds our 10-page limit.
There is also (thanks to Jeff Northfield) a cumulative index of all papers published by
ASERA since its inception. (Keen observers may note that only one member of
ASERA, founding member and Business Manager Dick White, appears as an author in
both the first issue and the present one. I hasten to add that he has also written a few
papers in between.)

There are also several stylistic changes: the inclusion of abstracts and authors’
biographies, the single-spaced Times Roman 10-pt font, all designed to make this
publication look like a proper journal, as well as be one. I hope you approve.

Paul Gardner
Editor.

Monash University, December, 1990.
GUIDELINES FOR AUTHORS FOR THE PREPARATION OF PAPERS AND DISKS FOR RESEARCH IN SCIENCE EDUCATION

SUBMISSION TO CONFERENCE ORGANISERS

Hard copies only are required for submission to the ASERA conference organisers. Setting out can be in the same format as required for publication, or in some other format if you prefer.

SUBMISSION TO EDITOR FOR PUBLICATION IN RISE

Papers submitted to the editor for publication in *RISE* should be on disk, with three hard copies. See **Word Processing** and **Setting Out** below. If it is impossible for you to provide a disk copy in the format requested, please advise the editor. Papers should be submitted within the month following the conference.

Word Processing

Software The preferred software is WordPerfect, but WordStar, MSWord, Multimate, or ASCII files are also acceptable. Double-sided double-density 5.25" disks are preferred, but MSWord files on 3.5" disks are acceptable. These software packages all have automatic wrap around. Please do not use hard returns except for new paragraphs, headings, etc. The use of hard returns at the end of normal lines creates problems. Please do not use bold type or italics.

Format - If you wish to see what your paper will look like in RISE format, set your format at 80 characters per line, single spacing, page number centred at top, followed by one blank line, and 50 lines of text. (To make your own hard copy of this, you will need a small print font.) We use Times Roman 10pt.

N.B. It is the primary responsibility of authors to ensure that copy has been thoroughly proof read. Please ensure that typographical errors have been corrected, and that there is agreement between the references in the text and the final reference list.

Setting Out

Length Each paper is to have a maximum length of 10 pages in RISE format. This length includes text, reference list and pages containing diagrams, figures and tables. All pages are to be numbered consecutively.

Title Article title in capitals, author(s) in lower case, affiliated institution in lower case, all centred.

Abstract Include an abstract of between 100 - 200 words, headed ABSTRACT (centred), immediately following the title; the whole abstract should be indented.

Tables Tables should be given arabic numbers, with centred, capital headings:

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRELATIONS BETWEEN ANXIETY AND RUNNING SPEED</td>
</tr>
<tr>
<td>Simple tables should be incorporated directly into the word-processed text. Complex tables which cannot be treated in this way should be supplied separately as camera-ready copy, with appropriate space left in the body of the text.</td>
</tr>
<tr>
<td>Indented dot points Use asterisks, in preference to letters, numbers, or dots to mark indented dot points, e.g.</td>
</tr>
<tr>
<td>The project involved</td>
</tr>
<tr>
<td>* a conceptualization phase...</td>
</tr>
<tr>
<td>* an implementation phase...</td>
</tr>
</tbody>
</table>

(vii)
Figures Figures should be supplied as camera-ready copy. Try to ensure good quality copy: dot-matrix graphics printed in pale-grey ink often reproduce poorly! Leave appropriate space in the text. Figure descriptions should be below the figure and centred.

Fig. 3 A model of the learning process

Headings Main headings should appear in CAPITALS in the centre of the page. Subheadings should be in lower case, underlined, and left-justified. They should be used at regular intervals to assist in the reader’s comprehension of the text. Section and subsection headings should not be numbered.

Reference notes - Footnotes are not to be used. For all notes (including references to unpublished material, personal communications, etc.) use the following system:

Arguments advanced by Smith (Note 1) ...

REFERENCE NOTES (prior to REFERENCES)

References References to journals and books should follow the APA guidelines. In the body of the paper references should appear, for example, as Bernstein (1971), or Fisher and Fraser (1983). References in parentheses are presented as (White & Tisher, 1986). These references should be placed in the reference list as follows:

Please note:
* author’s name in lower case (a change from the present mode).
* ampersand (&) symbol for joint authorship
* lower case for article or book titles
* upper case initials for journal titles, underlined
* volume number of journal underlined
* book titles underlined
* city of publication followed by publisher
* two-space indentation below each author.

Author(s) At the end of the paper, include a brief note in the following form:

AUTHOR

DR. MARY SMITH, Senior Lecturer, Faculty of Education, University of Central Australia, Alice Springs, NT 0870. Specializations: biotechnology curriculum development, biology teacher education.

(viii)
RESEARCH NOTES

READING, 'RITING AND 'RITHMETIC:
BEING LITERATE IN SCIENCE AND MATHEMATICS

R. A. Schibeci
Centre for Mathematics Science and Technology Education
Murdoch University
Murdoch, Western Australia 6150

1990 is International Literacy Year. 'Literacy' is on everyone's lips....or, at least, in many peoples' minds. Traditionally, 'literacy' has been associated with 'reading' and 'writing'. What about the person who is scientifically and mathematically literate: how do we recognise such a person?

In 1990, the Centre for Mathematics Science and Technology Education at Murdoch University was awarded $80 000 for the project Secondary Literacy Inservice Package for High School Science and Mathematics. This project is funded by the Australian Government's International Literacy Year Programme through the Department of Employment, Education and Training.

The science education community has contributed to the area of language use in science education. For example, in the U.K., the early Science Teacher Education Project (STEP) materials included a discussion of this topic: an overview, entitled "Language and communication in science lessons" (Sutton, 1974) highlighted the importance of oral and written language in science classrooms. In the U.S.A., Lemke has written extensively on this topic. For example, in his "Talking physics" (1982) he points to the crucial role played by language in developing students' understanding (or lack of understanding) of science.

In Australia, Gardner (1974) published his work on 'Language difficulties of science students'. The ASEP team took up the specific problem of readability and designed each module so that its readability level was two grade levels below that of the intended audience. (Thus a year 10 module had a readability level that was suitable for year 8). Such an approach, which had the worthwhile aim of giving students an easy introduction to the language of science had the unintended effect of avoiding the problem. Students who studied a large number of ASEP modules were not being exposed to much formal science language which characterises the majority of science textbooks. Students must be given the skills which will enable them to extract meaning from their traditional science textbooks: it is this skill (among others) which will help them to become 'scientifically literate'.

Some in the 'language/literacy" community argue that it is possible for a person to be 'literate' in a general sense. Others argue that it is not possible to be 'literate' without reference to some context: thus it is only possible to speak of a person who is 'literate' in science or history or mathematics. In an earlier age, to be 'literate' was to be 'well read'. Today, some (for example, Green, 1988) argue that to be literate is to have a set of subject-specific literacies.
The project is based on the belief that language skills are part of what gives a person access to the language of science. People who simply regurgitate information are not 'literate'. They must understand how to "read", "write" and "talk" science and mathematics. These principles are part of the underpinnings of our project.

Ultimately, the visible result of the project will be a series of modules dealing with different aspects (reading, writing, listening, talking) of literacy in science and mathematics.

REFERENCES

APPENDIX

TWENTY YEARS OF RISE
A CUMULATIVE INDEX 1971-1990

Jeffrey R. Northfield
Monash University

It seems appropriate that this twentieth edition of RISE contain a listing of the contributions made to the journal since its inception. The first attempt to prepare a consolidated list was made in 1983, but this is the first time that such a list has been published as part of the journal. The categories which seemed appropriate then appear to be less useful now but have been retained to organise the 1990 review. What follows is a reminder of the significant effort that has been made to science education research by the Australasian Science Education Research Association (ASERA). Others may wish to re-classify the articles and develop more useful categories for organising our work. The index certainly provides the basis for further research.

Contributions are arranged alphabetically by author in the following categories:

1. Theories of instruction
2. Nature of the learner
3. Classroom interaction
4. Curriculum evaluation:
 a) General issues
 b) Materials
 c) Implementation
 d) Outcomes
5. Research techniques/Test development
6. Reviews of research and curriculum development
7. The nature of science/science education
8. Science teacher education
9. Curriculum and teaching (1986 onwards)

Table 1 shows the numbers of papers in each category for each year.
| CATEGORY | 1971 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
|----------------------------------|------|
| 1. Theories of instruction | 1 | 3 | 1 | 1 | 2 | 0 | 3 | 1 | 5 | 2 | 5 | 1 | 1 | 1 | 2 | 2 | 0 | 3 | 0 | 2 |
| 2. Nature of the learner | 2 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 7 | 5 | 7 | 10 | 11 | 9 | 10 | 7 | 7 | 5 | 5 |
| 3. Classroom interaction | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 4 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 3 | 3 | 0 |
| 4. Curriculum evaluation | 4 | 2 | 4 | 5 | 6 | 2 | 7 | 3 | 6 | 3 | 2 | 1 | 2 | 3 | 4 | 0 | 1 | 1 | 0 | 8 |
| 5. Research techniques/ | 0 | 1 | 6 | 10 | 3 | 1 | 4 | 4 | 1 | 1 | 1 | 2 | 4 | 0 | 1 | 0 | 1 | 0 | 3 | 2 |
| test development | |
| 6. Reviews of research and | 2 | 3 | 4 | 3 | 3 | 2 | 0 | 3 | 3 | 1 | 5 | 1 | 2 | 3 | 5 | 2 | 8 | 6 | 5 | 5 |
| curriculum | |
| 7. Nature of science/ | 0 | 0 | 0 | 3 | 4 | 2 | 6 | 3 | 2 | 1 | 3 | 1 | 1 | 0 | 1 | 1 | 4 | 7 | 6 | 3 |
| science education | |
| 8. Science teacher education | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 3 | 6 | 0 | 2 | 3 | 1 | 3 |
| 9. Curriculum and teaching | |
| Total | 10 | 11 | 16 | 25 | 21 | 13 | 25 | 20 | 22 | 19 | 24 | 20 | 24 | 25 | 24 | 27 | 31 | 34 | 30 | 35 |
1. THEORIES OF INSTRUCTION

FENSHAM, P.J. & NICKLESS, K. (1975). Detectives are born, not made or two sides of a chemistry learning coin, p.43.

ROSEN, G. (1979). The effectiveness of the use of games as a revision technique in junior high school science, p.133.

2. NATURE OF THE LEARNER

BLAKE, A.J.D. (1976). An examination of relationships between cognitive preferences, field-independence and level of intellectual development, p.89.

FENSHAM, P.J. (1983). Equations, translations and number skills in learning chemical stoichiometry, p.27.

SYMINGTON, D.J. (1977). Primary school pupils' ability to see scientific problems in everyday phenomena, p.41.

SYMINGTON, D.J. (1978). Primary school pupils' ability to see investigable scientific problems in everyday phenomena: the teacher's role, p.167.

3. CLASSROOM INTERACTION

SYMINGTON, D.J. (1980). Primary school teachers’ knowledge of science and its effect on choice between alternative teaching behaviours, p.69.

4. CURRICULUM EVALUATION

a) General Issues

b) Materials

CLARKE, J. (1973). The role of the content and structure of curriculum material in cognition, p.119.
FAWNS, R. (1979). The treatment of aspects of change associated with the concept of evolution in the Australian Science Education Project - the development of an argument through four approaches to content analysis, p.119.

c) Implementation

FORDHAM, A. (1978). The interaction of student characteristics and science teaching on student perception of the learning environment, p.89.

d) Outcomes

5. RESEARCH TECHNIQUES/TEST DEVELOPMENT

GARDNER, M. (1973). The interdisciplinary approaches to chemistry (IAC) program and related research, p.17.

7. THE NATURE OF SCIENCE/SCIENCE EDUCATION

EDWARDS, J. (1990) Rediscovering ignorance, p.66

FENSHAM, P.J. (1979). The forest and the woodchips - are they alternative paradigms for studying the tree of science education?, p.43.

THORLEY, N.R. et.al. (1979). The aims of science courses, p.53.

8. SCIENCE TEACHER EDUCATION

BEARLIN, M. (1990) Toward a gender-sensitive model of science teacher education for women primary and early childhood teachers, p.21

FLANAGAN, R.B. (1976). Effect of a programmable calculator physics laboratory unit upon some attitudes to physics held by student science teachers, p.15.

NORTHFIELD, J.R. (1975). Changing perspectives of science teacher education that may be associated with curriculum development, p.23.

SYMINGTON, D.J. (1982). Lack of background in science: is it likely to always adversely affect the classroom performance of primary teachers in science lessons?, p.64.

9. CURRICULUM AND TEACHING

AUTHOR

ASSOCIATE PROFESSOR JEFFREY NORTHFIELD, Faculty of Education, Monash University, 3168. Specializations: educational evaluation, teacher education, health education.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A note from the General Editor</td>
<td>vi</td>
</tr>
<tr>
<td>Editorial comments</td>
<td>vii</td>
</tr>
<tr>
<td>Review panel</td>
<td>viii</td>
</tr>
<tr>
<td>Guidelines for authors</td>
<td>x</td>
</tr>
<tr>
<td>APPLETON, K. Mature-age students: how are they different?</td>
<td>1</td>
</tr>
<tr>
<td>AUBUSSON, P., RELICH, J. & WOTHERSPOON, D. Professional development</td>
<td>10</td>
</tr>
<tr>
<td>and perceived needs of science teachers</td>
<td></td>
</tr>
<tr>
<td>BEARE, R. A system to exploit the spreadsheet ‘Excel’ for enhancing</td>
<td>20</td>
</tr>
<tr>
<td>learning in science</td>
<td></td>
</tr>
<tr>
<td>BELL, B.F. & PEARSON, J.D. ‘I know about LISP but how do I put it</td>
<td>30</td>
</tr>
<tr>
<td>into practice?’</td>
<td></td>
</tr>
<tr>
<td>CARR, M. & SYMINGTON, D. The treatment of science discipline</td>
<td>39</td>
</tr>
<tr>
<td>knowledge in primary teacher education</td>
<td></td>
</tr>
<tr>
<td>CROSS, R.T. & PRICE, R.F. Towards teaching science for social</td>
<td>47</td>
</tr>
<tr>
<td>responsibility: an examination of flaws in Science, Technology and</td>
<td></td>
</tr>
<tr>
<td>Society</td>
<td></td>
</tr>
<tr>
<td>DAWSON, C. & O’CONNOR, P. Gender differences when choosing school</td>
<td>55</td>
</tr>
<tr>
<td>subjects: parental push and career pull, some tentative hypotheses</td>
<td></td>
</tr>
<tr>
<td>EKE, M. & GARDNER, P.L. Evaluation of a Technology unit in a girls’</td>
<td>65</td>
</tr>
<tr>
<td>primary school</td>
<td></td>
</tr>
<tr>
<td>FAWNS, R.A. Stories tell but words conceal - aspects of</td>
<td>74</td>
</tr>
<tr>
<td>historiographical research</td>
<td></td>
</tr>
<tr>
<td>FENSHAM, P., NAVARATNAM, K., JONES, W. & WEST, L. Students’ estimates</td>
<td>80</td>
</tr>
<tr>
<td>of knowledge gained as measures of the quality of teacher education.</td>
<td></td>
</tr>
<tr>
<td>FERGUSON, P. Primary/secondary transition and related teacher</td>
<td>90</td>
</tr>
<tr>
<td>attitudes to science</td>
<td></td>
</tr>
<tr>
<td>FLEER, M. Socially constructed learning in early childhood science</td>
<td>96</td>
</tr>
<tr>
<td>education</td>
<td></td>
</tr>
<tr>
<td>FLEER, M. & BEASLEY, W. A study of conceptual development in early</td>
<td>104</td>
</tr>
<tr>
<td>childhood</td>
<td></td>
</tr>
<tr>
<td>FORGASZ, H. Gender, pre-service teachers and assessment of pupil</td>
<td>113</td>
</tr>
<tr>
<td>work</td>
<td></td>
</tr>
</tbody>
</table>
FRANCIS, R. & HILL, D. Science and report writing

GAULD, C. History of science, individual development and science teaching

GRiffiths, A.K. & BARRY, M. Secondary school students’ understanding of the nature of science

GRINDROD, A., KLINDWORTH, A., MARTIN, M-D. & TYTLER, R. A survey of pre-service primary teachers’ experiences of science in schools

HACKLING, M.W. & GARNETT, P.J. Primary and secondary school students’ attainment of science investigation skills

HAPPS, J.C. Challenging pseudo-scientific and paranormal beliefs held by some pre-service primary teachers

HOBAN, G. Integrating qualitative and quantitative methods to monitor an intervention program

JANE, B., MARTIN, M.D. & TYTLER, R. Changing primary teacher trainees’ attitudes to science

JEGEDE, O.J., TAYLOR, J.C. & OKEBUKOLA, P.A. Knowledge engineering: an alternative approach to curriculum design for science education at a distance

KAHLE, J.B., ANDERSON, A. & DAMNJANOVIC, A. A comparison of elementary teacher attitudes and skills in teaching science in Australia and the United States

KEARNEY, D. & ORMISTON-SMITH, H. The Graduate Diploma in Physics and Education: a teacher training initiative

KINNEAR, A. Gender-inclusive technology materials for the primary school: a case study in curriculum development

LOUGHRAN, J. & INGVARSON, L. Keeping up: a dilemma for science teachers

McROBBIE, C.J., FRASER, B.J. & GIDDINGS, G.J. Comparison of personal and class forms of the Science Laboratory Environment Inventory

MURALIDHAR, S. The role of language in science education: some reflections from Fiji

OKEBUKOLA, P. & JEGEDE, O.J. The concept mapping heuristic as viewed by some Australian and Indonesian science teachers (iv)
PARSONS, S. Pre-service secondary science teachers making sense of constructivism 271

RITCHIE, S.M. & RUSSELL, B. The construction and use of a metaphor for science teaching 281

SKAMP, K. Primary science and technology: how confident are the teachers? 290

STRUBE, P. Issues of teaching science to nurses in the tertiary sector 300

SYMINGTON, D. & MACKAY, L. Science discipline knowledge in primary teacher education: responses to the Discipline Review of Teacher Education in Mathematics and Science 306

TULIP, D. & COOK, A. A comparison of author intentions and student perceptions about textbook characteristics 313

TULIP, D.F. & LUCAS, K.B. Persistence and withdrawal by students in a preservice science and mathematics teacher education course 320

WILKES, L.M. & BATTS, J.E. Registered nurses' constructed meaning of concepts of solution and their use in clinical practice 328

WOOLNOUGH, J.A. & CAMERON, R.S. Girls, boys and conceptual physics: an evaluation of a senior secondary physics course 337

Research Notes

COULSON, R.I. Preschool children's interests in science 345

GIBBS, A. Predicting achievement of first semester university science students 348

PALMER, W.P. The construction of an Aboriginal science bibliography 349

ROBERTSON, B.K. & PALMER, W.P. Popularising science through television 352
A NOTE FROM THE GENERAL EDITOR

At the time I accepted appointment as Editor of RISE for three years at the Perth ASERA conference in 1990, I expected to be taking study leave in the first half of 1991, which would have meant my absence from the Surfers Paradise conference. However, I expected to be back in Australia in time to supervise the editorial process in the latter half of the year.

My faculty curiously decreed however that the staffing needs of Monash were somehow more pressing than the editorial needs of RISE, and I had to postpone my travels for six months. This meant that I was able to attend the ASERA conference. (I flew overseas out of Brisbane immediately afterwards). It also meant finding some willing colleagues to deputise for me while I was away.

Fortunately, two very able people, Helen Forgasz and Jeff Northfield, readily took on the work. I did not anticipate, and neither did they, the magnitude of the task awaiting them. Although the number of papers published in RISE has grown steadily over the years, in 1991 it took a quantum leap upward to an amazing new level. I, and all of us in ASERA, therefore owe a tremendous debt of gratitude to Helen and Jeff for the very demanding work they have done, and to the expanded Review Panel whose contributions have helped ensure that RISE remains a quality publication.

Paul Gardner
EDITORIAL COMMENTS

During Paul Gardner's absence on leave, we took on the task of putting together this issue of RISE. Our task was greatly facilitated by our secretarial and technical assistants whose previous experience proved invaluable. We also gratefully acknowledge the cooperation of the contributors and reviewers who, on the whole, provided copy in the correct format and met our strict deadlines.

The very large number of papers submitted to RISE this year tested the limits of the publication. We attempted to publish as many as possible. In so doing we decided to extend the reviewing panel and drew heavily on the membership of ASERA to spread the load; in all, 78 people reviewed the papers contained in the following pages.

During 1991 the first monograph derived from RISE was produced:

Northfield J. R. & Symington, D. (Eds.) Learning science viewed as personal construction: An Australian perspective, Curtin University of Technology.

A second monograph, focusing on primary science education is in preparation. An updated cumulative index, RISE 1971 - 1991 has also been prepared and is available from Jeff Northfield, Faculty of Education, Monash University, Clayton, Vic. 3168.

The contents of this issue provide a good indicator of the level and scope of research activity in science education across Australasia. Amongst the papers several common themes are evident: pre-service teacher education, primary science, professional development, and effective pedagogy. Research direction would also appear to have been influenced by the findings of the 1989 DEET Discipline review of teacher education in mathematics and science. Science education in Australasia should be strengthened by the research findings, successful innovations and promising initiatives reported in these pages.

Helen Forgasz
Editor,
Jeff Northfield
Assistant Editor.
REVIEW PANEL

General Editor: Paul Gardner
Editor of this issue: Helen Forgasz
Assistant Editor: Jeff Northfield

Ken Appleton
Peter Aubusson
John Baird
Judith Batts
Beverley Bell
Jim Butler
Malcolm Carr
Alan Cook
Deborah Corrigan
Mark Cosgrove
Leon Costermans
Ruth Coulson
Laurie Cree
Roger Cross
Chris Dawson
John Dooleys
Bev Farmer
Rod Fawns
Peter Fensham
Peter Ferguson
Colin Gauld
Al Gibbs
Ian Ginnns
Denis Goodrum
Alan Griffiths
Alison Grindrod
Richard Gunstone
Mark Hackling
Margaret Hadley
Sharon Haggerty
Mavis Haigh
John Happs
Tim Hardy
Dorothy Hayes
Doug Hill
Garry Hoban
Paul James
Beverley Janc
Olugbemiro Jegede
David Johnston
Brian Jones
Eddy de Jong
Dorothy Kearney
University College of Central Queensland
University of Western Sydney
University of Melbourne
Australian Catholic University
University of Waikato
University of Queensland
University of Waikato
Queensland University of Technology
Monash University
University of Technology, Sydney
Monash University
University of Melbourne
University of Technology, Sydney
La Trobe University
University of Adelaide
Queensland University of Technology
Auckland College of Education
University of Melbourne
Monash University
University of Tasmania
University of NSW
Charles Sturt University
Queensland University of Technology
Edith Cowan University
Memorial University, Newfoundland
Victoria College
Monash University
Edith Cowan University
La Trobe University
University of Western Ontario
Auckland College of Education
Murdoch University
University of Canberra
East Malvern, Victoria
Charles Sturt University
Charles Sturt University
University of Sydney
Victoria College
University College of Southern Queensland
University College of Southern Queensland
University of Tasmania
Monash University
La Trobe University

(viii)
Rex Kerrison
Adrienne Kinnear
Judith Kinnear
Valda Kirkwood
John Loughran
Keith Lucas
Marjory Martin
Patricia McDermott
Campbell McRobbie
Srinivasiah Muralidhar
John O'Brien
Peter Okebukola
Helen Ormiston-Smith
William Palmer
Sharon Parsons
John Pearson
Chris Penna
Ronald Price
Steve Ritchie
Susan Rodrigues
Bernice Russell
Keith Skamp
Beverley Stanbridge
Paul Strube
David Symington
Richard Trembath
David Tulip
Max Walsh
Richard White
Lesley Wilkes
Janice Wilson
Jim Woolnough

University of Tasmania
Edith Cowan University
University of Sydney
University of Waikato
Monash University
Queensland University of Technology
Victoria College
Department of Education, Employment and Training
Queensland University of Technology
The University of the South Pacific
James Cook University
Curtin University of Technology
La Trobe University
Northern Territory University
San Jose State University
University of Waikato
Monash University
La Trobe University
James Cook University
University of Waikato
St. Patrick's College, Townsville
University of New England
Cairns, Queensland
University of South Australia
Victoria College
Monash University
Queensland University of Technology
University of Tasmania
Monash University
Australian Catholic University
Griffith University
Dickson College, ACT

Word Processing (Monash University)
Papers: Carol Keddie
Correspondence: Trish Pettit & Heather Phillips
Technical Assistance: Sharon Fitzgerald.

Printing
Monash University Printery
GUIDELINES FOR AUTHORS FOR THE PREPARATION OF PAPERS AND DISKS FOR RESEARCH IN SCIENCE EDUCATION

SUBMISSION TO CONFERENCE ORGANISERS

Hard copies only are required for submission to the ASERA conference organisers. Setting out can be in the same format as required for publication, or in some other format if you prefer.

SUBMISSION TO EDITOR FOR PUBLICATION IN RISE

Papers submitted to the editor for publication in RISE should be on disk, with three hard copies. See Word Processing and Setting Out below. If it is impossible for you to provide a disk copy in the format requested, please advise the editor. Papers should be submitted within the month following the conference.

Word Processing

Software: The preferred software is WordPerfect, but WordStar, MSWord, Multimate, or ASCII files are also acceptable. Double-sided double-density 5.25" disks are preferred, but MSWord files on 3.5" disks are acceptable. These software packages all have automatic wrap around. Please do not use hard returns except for new paragraphs, headings, etc. The use of hard returns at the end of normal lines creates problems. Please do not use bold type or italics.

Format - If you wish to see what your paper will look like in RISE format, set your format at 80 characters per line, single spacing, page number centred at top, followed by one blank line, and 50 lines of text. To make your own hard copy of this, you will need a small print font. We use Times Roman 10pt.

N.B. It is the primary responsibility of authors to ensure that copy has been thoroughly proof read. Please ensure that typographical errors have been corrected, and that there is agreement between the references in the text and the final reference list.

Setting Out

Length: Each paper is to have a maximum length of 10 pages in RISE format. This length includes text, reference list and pages containing diagrams, figures and tables. All pages are to be numbered consecutively.

Title: Article title in capitals, author(s) in lower case, affiliated institution in lower case, all centred.

e.g. A LEARNING MODEL FOR SCIENCE EDUCATION

Mary Smith and John A. Smith

University of Central Australia and Alice Springs College.

Abstract: Include an abstract of between 100 - 200 words, headed ABSTRACT (centred), immediately following the title; the whole abstract should be indented.

Tables: Tables should be given arabic numbers, with centred, capital headings.

TABLE 2

CORRELATIONS BETWEEN ANXIETY AND RUNNING SPEED

Simple tables should be incorporated directly into the word-processed text. Complex tables which cannot be treated in this way should be supplied separately as camera-ready copy (maximum size 22.5 x 13.5 cm) with appropriate space left in the body of the text.

Indented dot points: Use asterisks, in preference to letters, numbers, or dots to mark indented dot points, e.g.
The project involved
- a conceptualization phase...
- an implementation phase...

Figures Figures should be supplied as camera-ready copy (maximum size 22.5 x 13.5 cm). Try to ensure good quality copy: dot-matrix graphics printed in pale-grey ink often reproduce poorly! Leave appropriate space in the text. Figure descriptions should be below the figure and centred.

Fig. 3 A model of the learning process

Headings Main headings should appear in CAPITALS in the centre of the page. Sub-headings should be in lower case, underlined, and left-justified. They should be used at regular intervals to assist in the reader’s comprehension of the text. Section and sub-section headings should not be numbered.

Footnotes are not to be used.

References References to journals and books should follow the APA guidelines. In the body of the paper references should appear, for example, as Bernstein (1971), or Fisher and Fraser (1983). References in parentheses are presented as (White & Tisher, 1986). These references should be placed in the reference list as follows:

Please note:
- author’s name in lower case
- ampersand (&) symbol for joint authorship
- lower case for article or book titles
- upper case initials for journal titles, underlined
- volume number of journal underlined
- book titles underlined
- city of publication followed by colon, followed by publisher
- two-space indentation below each author.

In line with current APA practice, reference notes should no longer be used. References may include conference papers. Other material such as personal communications and unpublished manuscripts should be described as such in the body of the text, without further referencing.

Author(s) At the end of the paper, include a brief note in the following form:

AUTHOR

DR. MARY SMITH, Senior Lecturer, Faculty of Education, University of Central Australia, Alice Springs, NT 0870. Specializations: biotechnology curriculum development, biology teacher education.
Research in Science Education 1991, 21, 345 - 347

RESEARCH NOTES

PRESCHOOL CHILDREN'S INTERESTS IN SCIENCE

R. I. Coulson
School of Early Childhood Studies
University of Melbourne

ABSTRACT

Studies of children's attitudes towards science indicate that a tendency for girls and boys to have different patterns of interest in science is established by upper primary school level. It is not known when these interest patterns develop.

This paper presents the results of part of a project designed to investigate preschool children's interests in science. Individual 4 - 5 year-old children were asked to say what they would prefer to do from each of a series of paired drawings showing either a science and a non-science activity, or activities from two different areas of science.

Girls and boys were very similar in their overall patterns of choice for science and non-science items. Within science, the average number of physical science items chosen by boys was significantly greater than the average number chosen by girls (p = .026). Girls tended to choose more biology items than did boys, but this difference was not quite significant at the .05 level (p = .054). The temporal stability of these choices was explored.

Efforts to increase participation in science and particularly by girls in physical science have to counter attitudinal patterns which are already present in children at upper primary level. Studies in Australia (Parker & Rennie, 1986) and overseas (Ormerod & Wood, 1983; Kelly, 1986) show that the tendency for girls to prefer biological areas of science and for boys to be more interested in physical science topics is clearly established in children in grades five and six. These attitudes are not a result of formal science teaching received at secondary school.

When these attitudes form, and what factors influence their formation, is not known. Although gender is a very important variable influencing attitudes towards science in secondary and upper primary students, the picture in younger children appears to be largely unexplored. As part of a project to examine the development of children's attitudes towards science, I am investigating preschool children's patterns of interest, to see whether children of this age show any preference for science or non-science activities, and within science, for biological or physical aspects of science.

The first task is to design an attitude measuring instrument suitable for use with preschool children. This initial work is being done with children from two preschool centres, both fairly 'typical' in their programs, with no particular emphasis on science. One group consisted of 10 girls and 13 boys, the other of 6 girls and 13 boys. All
children were between 4 and 5 years old. Because I wanted to look at children's preferences, I used a forced choice method where the children were asked to choose which activity they would rather do from a limited range offered. There were 6 sets of activities, with 3 activities in each set; one with a biological science focus, one with a physical science focus and one with a non-science focus. For example, one set was:

"What would you rather do? Would you rather help set up a fish tank, help set up a torch, or help set up a cubby house?"

This was to try as far as possible to ensure that children were choosing on the basis of the conceptual content, e.g. fish tank, torch or cubby house, rather than on the context of the activity which was helping to set something up. Pictures of the activities were used to try to avoid any difficulties associated with auditory memory. The pictures were presented in pairs, with children being asked to make a 2-way choice of what they would rather do from each combination in a set. The order of pictures from biological, physical and non-science categories was varied within pairs and between pairs.

Results are shown in Fig. 1. Girls and boys were very similar in their overall patterns of choice for science or non-science activities, with a non-significant tendency for both girls and boys to prefer non-science activities. There was, however, a qualitative difference in the types of science activities chosen by girls and boys. The average number of physical science items chosen by boys was significantly greater than the average number chosen by girls (p = .026, 1-tailed t-test). Girls tended to choose more biology items than did boys, but this difference was not quite significant at the .05 level (p = .054).

![Fig. 1 Category choices made by girls and boys](image-url)
As one way of assessing the reliability of the test, it was readministered to one group of children after eight days. For individual children, the correlation coefficients between test and retest choices varied enormously, from +0.67 to -0.29. For the whole group the test-retest correlation was +0.07. This could indicate that the test was hopeless, or it could indicate that the patterns of interest in these very young children were very unstable, varying from day to day, or at least from week to week. To test these alternative explanations, I altered the presentation of the test so that all three items in a set were presented at once and the children were asked to choose which of the three activities they would rather do. With this method the test-retest correlations for individual children increased considerably, varying from just above zero to +0.75, and for the whole group was +0.74. This finding suggests that the preferences of the children may be more stable than was indicated by the original method of testing. Initial results indicate that the same basic patterns of interest shown by the two-way testing are present.

There is still, however, a very wide range in test-retest correlations, suggesting that individual children vary in the stability of their choices. Interests can fluctuate depending on recent experiences, and test responses could be influenced by how close it was to snack time or other factors affecting motivation. Following refinements to the test, I plan to further explore the temporal stability of science interests in young children, and to investigate factors which may influence the formation of these interests.

IMPLICATIONS

Although this work is still in its very early stages, it appears that at least some 4-5 year old children have already formed distinct patterns of interest in science which parallel those seen in older children. The common practice in preschools tends to be to allow children to choose the activities they wish to be involved in. This practice could be reinforcing gender differences in science interests. A more interventionist strategy may be desirable, both in terms of the types of activities offered and in encouraging children into those activities, if greater participation by girls in physical sciences is to be achieved.

REFERENCES

AUTHOR

MS. RUTH COULSON, Lecturer, School of Early Childhood Studies, University of Melbourne, 4 Madden Grove, Kew 3101. Specializations: early childhood science education, biological aspects of child development.
PREDICTING ACHIEVEMENT OF FIRST SEMESTER UNIVERSITY SCIENCE STUDENTS

Al Gibbs
Charles Sturt University - Mitchell

ABSTRACT

This paper reports on 11 measures used as predictors of students' achievement in their first semester subjects. The students were enrolled in the same four core subjects of a university general science course. Although a number of statistically significant correlations were found, only one predictor variable, HSC aggregate mark, correlated significantly with each of the achievement variables. One predictor variable entered four of the achievement regression equations, while two variables entered the fifth, accounting for 34 to 54% of the variance.

Copies of this paper are available from Dr. Gibbs, School of Applied Sciences, Charles Sturt University - Mitchell, Panorama Avenue, Bathurst, N.S.W. 2795.
THE CONSTRUCTION OF AN ABORIGINAL SCIENCE BIBLIOGRAPHY

W. P. Palmer
Northern Territory University

ABSTRACT
This research note concerns the construction of a bibliography of written materials about Aboriginal science and technology drawn from books, theses, dissertations, scientific and non-scientific journals, conference papers and newspapers etc. in fact, articles about the science and technology that relate in some way to Aborigines, from whatever source, have been included. The articles collected have been listed and classified using Hypercard and major issues and themes have been drawn out of these classifications. It is hoped that the bibliography will be of value in itself and that the categorisation of written materials will help curriculum developers.

INTRODUCTION
The purpose of this paper is to explain the way in which the Aboriginal science bibliography was constructed and to indicate how it can be used and to whom it may be useful. The bibliography is a listing of some three hundred and fifty references which relate to Aboriginal science from a wide variety of sources. This should prove useful in itself, but to add to its usefulness as a resource the bibliography has been transferred to Hypercard. Most of the items referenced have a brief annotation and are classified in a number of ways. This should add to the use of the reference for curriculum developers or teachers considering using the "two ways/both ways" approach. The bibliography will thus be available in either as a listing of references or on Hypercard with the references classified and annotated.

CONSTRUCTION
The references were collected by a variety of methods including sorting through all available issues of journals likely to contain pertinent information, collecting references from the reference sections of articles about Aboriginal science and searching conference proceedings of a wide variety of Australian conferences. The usual yearly indexes were utilised and computer searches have been made using the Australian Educational Index (AEI), the British Educational Index (BEI) and Educational Research Information Centre (ERIC), but these searches proved to be of very limited value in this subject area. This search has now taken a little over two years. Initial results after less than a year were published (Palmer, 1990) and in another paper some brief comments were made about the lack of research interest in Aboriginal science: "Aboriginal science is very much a neglected topic" (Palmer, 1991).

The construction of a standard bibliographical listing needs no explanation, but for the hypercard listing a number of additional classifying systems were used. These and the reason for them will be explained. The idea of "two way direction" has been included as a number of educators believe that the "both ways system" is effective in teaching Aboriginal children. In this approach Aboriginal content may be taught using western methods and conversely western content may be taught using Aboriginal methods, but teachers try to avoid using new/western methods to teach new/western content. Within school contexts the use of these approaches would be under Aboriginal control,
within the communities. For the purposes of the bibliography the approach has been simplified so that the symbol A>W indicates that the content or method being described is largely Aboriginal, whereas the symbol W>A indicates that the major part of ideas in the article are western.

In a number of cases the classification could be a subject of further discussion. Overall the aim would be to indicate roughly to curriculum developers which areas had a large Aboriginal content, or were approached from an Aboriginal view point.

The author sought wide overall headings which would include large parts of both western and Aboriginal science. The headings chosen were: Education, Technology, Ownership. Taken with the "two way direction" this provides a total of six different classes which the author hopes will be found useful in sorting out similar areas. Fig. 1 illustrates schematically the overall classification system. In Fig. 1 the area in common between the two circles representing the western view of science and the Aboriginal world view (though here and throughout the paper it might be more accurate to say "a western perception of an Aboriginal world view") respectively, is the content area most likely to be a source of science content for mixed or for Aboriginal schools. This domain has within it three common areas called Humanity and Technology, Humanity and Education and Humanity and Ownership. These would be topic areas around which a common curriculum could be constructed. The contents of the bibliography will also be divided into these areas, though it must readily be admitted that some references do not fit naturally into any of the categories, whilst others might well fit in more than one category. Fig. 1 and Table 1 together indicate the way in which the references which have been collected have been classified.

Fig. 1 World views, Aboriginal and western with respect to science.
Table 1 shows generally how the topics fit into particular categories, though it must be remembered that topic areas could be in the A > W or the W > A category depending on the way in which the article was written.

TABLE 1
KEY TO CLASSIFICATION OF REFERENCES

<table>
<thead>
<tr>
<th>MAIN THEMES</th>
<th>A > W</th>
<th>W > A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanity and Technology</td>
<td>Aboriginal material culture</td>
<td>Housing design</td>
</tr>
<tr>
<td></td>
<td>Boomerang</td>
<td>Bush latrines</td>
</tr>
<tr>
<td></td>
<td>Digeridu</td>
<td>Appropriate technology</td>
</tr>
<tr>
<td></td>
<td>Canoes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fishtraps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bush-medicines</td>
<td></td>
</tr>
</tbody>
</table>

Humanity and Education	Land conservation	Primary curricula
		Secondary curricula
		Tertiary curricula

Humanity and Ownership	Land	Mining
		Uranium
	Body/skeletal	Gold
	Drugs	Diamonds
	Petrol sniffing	Manganese
	Diet	Aluminium
		Cape York space station
		Western medical help
		Atomic bomb testing

CONCLUSION

At the start of this project over two years ago, the author was not sure that there would be sufficient material to form a bibliography. There is in fact a wealth of material though comparatively little of it exists within the confines of science education. The bibliography as prepared is far from complete, but it is hoped that, even as it is, it will be of assistance to enthusiastic teachers or curriculum developers. The author would be interested in corresponding with others involved in this area, and would supply the full text of this paper on request.

REFERENCES

AUTHOR

MR. BILL PALMER, Senior Lecturer, Faculty of Education, Northern Territory University, Casuarina, NT, 0811. Specialisations: Science teacher education, chemical education, science education in developing countries, educational issues.
POPULARISING SCIENCE THROUGH TELEVISION

B. K. Robertson and W. P. Palmer
Northern Territory University

AN INTRODUCTION TO SCIENCE TERRITORY
The genesis of this project (Science Territory) was an idea of one of the authors (BKR) and this was described in an earlier paper (Note 1), though it has taken some years to implement. In brief, the idea was to produce one minute films giving a favourable picture of the applications of science in everyday life linked to an excerpt from science being taught at a local primary or secondary school. Twenty six of these films have been made and these were shown on commercial television in the Northern Territory between 4.00pm and 7.00pm daily, when children in the 9-13 year old age group would be watching. The titles of these films are:

1. Plant sex
2. Swimming Pool
3. Momentum
4. Fuses
5. Bubbles
6. Gas Pipeline
7. Laser and Optic Fibres
8. Microwaves - AUSSAT
9. Sound Waves
10. Cranes
11. Solar Energy
12. Electromagnetic Fields
13. X-Rays
14. Recompression Chamber
15. Barramundi Skins
16. Drag Car
17. Gliders
18. Rainforests and Ants
19. TB -Bacteria
20. Dash - 8 Aircraft
21. Gold and Carbon
22. Oil Rig Wrenches
23. Crocodile meat
24. Drilling Mud
25. Radiation
26. Remote Sensing

EVALUATION
It was hoped that these children would be interested in the films and parents and children might talk about what they had seen which gave a favourable image of science and science teaching in the Territory. The project had two main objectives which were:
1. To increase students' interest in science.
2. To present to the public a realistic image of school science.
These aims are ambitious and the major academic problem is to assess whether they have been achieved. Efforts were made to evaluate the success of the project in achieving these aims and the results are summarised in Table 1.

TELEVISION, SCIENCE AND RESEARCH
One interesting feature about Science Territory is that, as far as the authors have been able to discover, no similar project has been attempted in the area of science, so there is thus no literature which is strictly comparable. The project has used the known expertise of the advertising industry and of its research, said by Barlex and Carre (1985) to be 'highly competent', to improve the image of science.

Teachers often complain about students' poor memory for remembering scientific facts. However children do appear to be able to remember TV advertisements. Zietske & Henry (1980) have shown that children's long term recall is improved by "a little and
often" rather than "saturation" over a few weeks. Science Territory has had advertisements evenly spread over six months.

TABLE 1

EVALUATION SUMMARY (Note 2)

<table>
<thead>
<tr>
<th>Evaluation Questions</th>
<th>Summary of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did the programs change students' attitudes towards science?</td>
<td>A small sample of students were given tests before and after the program presentation period to measure their attitudes towards science. There was no evidence to suggest that the programs had any effect on student attitudes towards science. A larger and more detailed study might show some result.</td>
</tr>
<tr>
<td>How do teachers regard the programs?</td>
<td>Questionnaires were given out to all teachers in 4 Primary Schools and 1 Secondary School. Teachers criticised some aspects of the programs but were enthusiastic about the idea and the programs in general.</td>
</tr>
<tr>
<td>How do parents regard the programs?</td>
<td>Students in one class interviewed their parents and their 2 closest neighbours. The results demonstrated great enthusiasm for the programs among parents and the community generally. Many positive suggestions were made about future plans for the project.</td>
</tr>
<tr>
<td>How do students regard the programs?</td>
<td>Teachers were requested to ask their classes if they would complete questionnaires. Students rated the programs informative, interesting and scientific and most thought they gave a fair representation of real school science activity.</td>
</tr>
<tr>
<td>How did teacher educators, science academics, science education consultants and mining executives regard the programs?</td>
<td>These groups were sent questionnaires after viewing the programs at meetings attended by the co-ordinator. They were asked questions about the concept. Almost every returned questionnaire in these groups rated the concept very highly. They supplied many comments about the future use of this type of program at a national level.</td>
</tr>
<tr>
<td>What sort of anecdotal comment has been gathered?</td>
<td>These were collected by the Science Territory management group in general conversation over the period of production and presentation of the programs. Comments were always positive and enthusiastic and often included constructive criticism. People are generally very interested in the project.</td>
</tr>
</tbody>
</table>

Science Territory has always tried to ensure that the science that it depicts is related to experiences from everyday life. This is also the opinion of Tarleton (1991) who has produced a TV science entertainment series in the U. K.
In an earlier paper one of the authors (BKR) points out that in his view student interest will be the main beneficiary of the Science Territory project (Robertson, 1989):

When these programs catch the interest of students, then the benefits for school based education will be enormous. Interest level is perhaps the most important factor in determining what a student learns and raising the level of interest in school subjects is what these programs are about.

CONCLUSION

Currently the 26 films in the Science Territory series have been shown to audiences who watch Channel 8 commercial television in the vicinity of Darwin. They are still being shown to audiences who watch Imparja Television. There are no plans at the moment to show Science Territory for any extra time on either Channel 8 or Imparja, once the Imparja programmes are complete. There are plans however to develop materials to complement the programmes, which could be used in schools and there are also plans to repeat the success of Science Territory and to expand it on a national basis to a series of programmes to be called "Science Oz".

This research note has described of the Science Territory project which has attempted to improve students' and parents' attitudes to science. It has also attempted to explain how the issue of determining the effectiveness of the project has been addressed. Overall, Science Territory proved to be an interesting, exciting, successful and worthwhile venture, particularly for the small scientific community of the Northern Territory. It also appears to be unique both in Australia and worldwide. There are therefore lessons that science educators can learn from this about new ways of improving students' attitudes to science.

REFERENCE NOTES

Note 2 In July 1991 one of the authors (BKR) sent a full analysis of the data to the sponsors (BHP Petroleum). Table 1 is a non-quantitative summary of the results.

REFERENCES

Robertson, B.K.(1989) Students learn through local television, Down to Earth, (December) 9-10.

AUTHORS

MR. BRIAN ROBERTSON, Principal Education Officer Science, Northern Territory Department of Education, NT, 0801 Specializations: Science education policy, curriculum development and science education development projects with industry.

MR. BILL PALMER, Senior Lecturer, Faculty of Education, Northern Territory University, Casuarina, NT, 0811. Specializations: Science teacher education, chemical education, science education in developing countries, educational Issues.
Research in Science Education

Volume 22
1992

Annual publication of the Australasian Science Education Research Association
Research in Science Education

Annual publication of the Australasian Science Education Research Association

Selected refereed papers from the Twenty-third Annual Conference of the Australasian Science Education Research Association, held at the University of Waikato, Hamilton, New Zealand, 10-12 July, 1992.

EDITOR
Paul L. Gardner

BUSINESS MANAGER
Richard T. White

General correspondence about this publication should be sent to Dr. P. Gardner, and orders to Professor R. White. Address: Faculty of Education, Monash University, Clayton, Vic., Australia 3168.

ISSN 0157-244X
CONTENTS

Editorial comments vi
Review Panel viii
Guidelines for authors x

ADEY, P. Alternative constructs and cognitive development: commonalities, divergences and possibilities for evidence. 1
APPLETON, K. Discipline knowledge and confidence to teach science: self-perceptions of primary teacher education students. 11
AUBUSSON, P. & WEBB, C. Teacher beliefs about learning and teaching in primary science and technology. 20
BAIMBA, A. Physics teachers' action-research experience with a teaching module on 'Force'. 30
BEIERS, R.J. & McROBBIE, C.J. Learning in interactive science centres. 38
BLACK, P. & SIMON, S. Progression in learning science. 45
BREW, C. Students' perceptions of an innovative university laboratory program. 55
BROWN, M. An ecological perspective on research with computers in science education. 63
BURNS, J. Student perceptions of technology and implications for an empowering curriculum. 72
COLES, B. Classroom behaviour settings for science: what can pre-service teachers achieve? 81
COOK, A. & TULIP, D. The importance of selected textbook features to science teachers. 91
COULSON, R. Development of an instrument for measuring attitudes of early childhood educators towards science. 101
DUIT, R., HÄUSSLER, P., LAUTERBACH, R., MIKELSKIS, H. & WESTPHAL, W. Combining issues of 'girl-suited' science teaching, STS and constructivism in a physics textbook. 106
FENSHAM, P.J. & MARTON, F. What has happened to intuition in science education? 114
FERNANDEZ, T.S. & RITCHIE, G. Reconstructing the interactive science pedagogy: experiences of beginning teachers implementing the interactive science pedagogy. 123
FLEER, M. Introducing technology education to young children: a design, make and appraise approach. 132
GARDNER, P.L. The application of science to technology. 140
GAULD, C. The historical anecdote as a 'caricature': a case study. 149
GILBERT, J. Risk-taking and teachers' professional development: the case of satellite remote sensing in science education. 157
GOODRUM, D., COUSINS, J. & KINNEAR, A. The reluctant primary school teacher. 163
HACKLING, M.W. & GARNETT, P.J. Expert-novice differences in science investigation skills. 170
HARDY, T. Adult experiences of science and technology in everyday life: some educational implications. 178
HENDERSON, G. Improving the quality of primary science teaching through a pre-service course. 188
HOBAN, G. Teaching and report writing in primary science: case studies of an intervention program.

INGVARSON, L. Professional standards for the teaching of science: an exploratory study.

JEANS, B. & FARNSWORTH, I. Primary science education: views from three Australian states.

JENKINS, E. School-based assessment of practical competence in science: some issues from English experience.

JONES, A. & CARR, M. Teachers' perceptions of technology education: implications for curriculum innovation.

JORDAN, B. Improving a playcentre science programme through action research.

KERRISON, R. Retraining chemistry teachers in the Philippines.

KIRK, C. & CHAPMAN, R. Science and technology management: designing an undergraduate course.

KIRKWOOD, V. & SYMINGTON, D. Reporting to parents: science in the context of the total primary curriculum.

LEVINS, L. Students' understanding of concepts related to evaporation.

LOUGHRAN, J. Becoming a science teacher: first year teachers' approaches to learning about teaching.

LOWE, R.K. Dealing with graphic output from diagram processing tasks: approaches to characterisation and analysis.

MATTHEWS, M.R. Constructivism and empiricism: an incomplete divorce.

NEWMAN, B. Can any good come out of researching in science education and being a science teacher at the same time?

NICHOLS, S. E. & SULLIVAN, B. Learning in professional practice schools: beyond clinical experiences and teacher workshops.

PETERSON, R. & TREAGUST, D. Primary pre-service teachers' pedagogical reasoning skills.

PRIETO, T., WATSON, J.R. & DILLON, J. Pupils' understanding of combustion.

RUTHERFORD, M. & ZIETSMAN, A. A College of Science: bridging the gap between school and university.

SEGAL, G. & COSGROVE, M. Challenging student teachers'conceptions of science and technology education.

SIMON, S. Curriculum and assessment innovation in science.

SINGH, A. & CARR, M. Learning theories and environments: a student-initiated intelligent computer-assisted environment.

SKAMP, K. Attitudes of pre-service mature age women students towards teaching primary science: an interview study.

TAO, P.K. Detection of missing and irrelevant information within paper and pencil physics problems.

TYTLER, R. Children's explanations of air pressure generated by small group activities.
Abstracts and Research Notes

CORRIGAN, D., FENSHAM, P., SHEED, J. & HUTCHISON, R.
VCE Chemistry as a curriculum innovation.

CREEDY, L. The effect of question format in revealing the quality
of student learning of some biological concepts.

CUNLiffe, A. Images of science teaching: an exploration of the beliefs
of preservice secondary science teachers.

DALL’ALBA, G., WALSH, E., BOWDEN, J., MARTIN, E., MASTERS,
G., RAMSDEN, P. & STEPHANOU, A. Textbook treatments and students’
understanding of acceleration.

FAWNS, R. Where are the science and maths teachers? A fifteen
year follow-up study.

JANE, B. & SMITH, L. Technology in the curriculum: a vehicle for the
development of children’s understanding of science concepts through
problem solving.

LUMB, P. & STRUBE, P. Disturbing the boundaries: the science-literature
membrane.

MADDOCK, M. Community involvement in research as a formal and
informal mechanism for science education: Project Egret Watch.

SADLER, J. & FAWNS, R. Communication on a problem solving task in
co-operative learning groups.
EDITORIAL COMMENTS

I feel very privileged to have been the editor of this volume of RISE, because the publication provides tangible evidence of a research organisation in a flourishing state of health. The 23rd ASERA conference — the second to be held in New Zealand — attracted a large number of participants (about 120), including several from countries outside the region. An unprecedented number of papers were presented (more than 80), most of which (65) were submitted for publication; and although space pressures precluded all of these from being published, this edition of RISE contains a record number of entries (48 papers and nine abstracts/research notes). It is the first time that a RISE volume has exceeded 400 pages. Its production drew upon the efforts of a very large editorial review panel; let me express my thanks here to the reviewers for their prompt and useful comments; several authors expressed their appreciation to me for the constructive help given to them.

This issue of RISE is not merely large, but rich: in the quality of the research being reported and in the scope of the topics, approaches and contexts represented. Although ASERA is a regional organisation, we are attracting an ever-growing number of international participants: this edition includes contributions from researchers in England, Germany, Spain, South Africa, Hong Kong and the United States.

ASERA began life 22 years ago through the efforts of academics principally interested in secondary school science. This collection encompasses work done in play centres, in primary and secondary schools, and in undergraduate, teacher education and professional development programs. The papers also refer to work done in a wide range of fields. Eight years ago, in an editorial introduction to a collection of papers given to a UNESCO conference on science and technology education in Germany, I commented on the paucity of educational research in the field of technology education and said that perhaps, "a decade or so from now, at another symposium on these topics, this bias might be overcome." In the present volume, a fifth of the papers reflect technological themes. And finally, the collection is rich in research styles. The organisation (and this editor) has no pre-conceived views about the best way to conduct science education research. Cognitive studies, attitude studies, curriculum development and evaluation, quantitative research, historical and philosophical research, phenomenological research, papers supporting constructivism and a paper questioning constructivism: all find their place in this volume.

This is an appropriate place to pay tribute to one man, who more than any other, helped to establish ASERA and nurture its development. In 1967, Peter James Fensham, then reader in chemistry at the University of Melbourne, came to Monash University to take up his appointment as Australia's first professor of science education. His qualifications were remarkable: a double Ph.D., one in chemistry from the University of Bristol, and one in social psychology from the University of Cambridge. He proceeded to attract around him a group of staff and post-graduate students with an interest in science education. Within a couple of years of his appointment, he conceived of a national organisation which would bring science education researchers together. It was the right idea at the right time; it was a period in which there was strong government interest in science education. The federal government had funded the building of school science laboratories, and was now, in co-operation with the states,
turning its attention to nationally funded curriculum projects. The million-dollar Australian Science Education Project was established in 1969, and there was fruitful cooperation between ASEP staff and science education researchers in the universities. (Two years later, the first ASERA journal would be published by ASEP.)

In May 1970, a meeting was held at Monash to discuss the possibility of establishing a professional association. (In enumerating the ASERA conferences, this meeting has always been counted as the first.) A more formal conference, held at Sydney's Macquarie University, was planned for the following year; at this second conference, papers were presented and published in Research 1971, the forerunner of this journal (which explains why the papers of the 23rd conference appear as Volume 22.) ASERA and its annual journal were established; in his preface, founding editor Dick Tisher described the future as "challenging and bright". He was right. The association has never looked back.

As the humorous and loving "roasting" given to Peter at the ASERA conference dinner in Hamilton so amply testifies, his international contributions to science education, his intellectual support to colleagues and students, and above all his character as a warm and caring human being, are all held in the highest regard. This year, 1992, marks both the 25th anniversary of his appointment to Monash and his retirement from the university. It was Dick White who formulated the now famous Law of Fenshamian Motion: if you stand on any spot on earth and wait long enough, Peter Fensham will go by. All of us hope that he will have a stimulating, enjoyable and healthy retirement, and that he will give all the members of the organisation he founded many opportunities to prove the truth of White's Law, again, and again, and again.

Paul Gardner
Editor

Monash University
REVIEW PANEL

Editor: Paul Gardner, Monash University

Philip Adey, King's College London
Ken Appleton, University of Central Queensland
Peter Aubusson, University of Western Sydney
John Baird, University of Melbourne
Neil Baumgart, University of Western Sydney
Margaret Bearlin, University of Canberra
Beverley Bell, University of Waikato
Kate Brass, Monash University
Jim Butler, University of Queensland
Malcolm Carr, University of Waikato
Alan Cook, Queensland University of Technology
Deborah Corrigan, Monash University
Mark Cosgrove, University of Technology, Sydney
Leon Costermans, Monash University
Ruth Coulson, University of Melbourne
Roger Cross, LaTrobe University
Gloria Dall'Alba, Royal Melbourne Institute of Technology
Chris Dawson, University of Adelaide
Eddy de Jong, Monash University
Reinders Duij, Institut für die Pädagogik der Naturwissenschaften, Universität Kiel
John Edwards, James Cook University
Bev Farmer, Auckland College of Education
Peter Fensham, Monash University
Marilyn Fleer, University of Canberra
Helen Forgasz, Monash University
Mike Forret, University of Waikato
Colin Gauld, University of New South Wales
John Gipps, Monash University
Denis Goodrum, Edith Cowan University
Richard Gunstone, Monash University
Mark Hackling, Edith Cowan University
Margaret Hadley, Melbourne Church of England Girls Grammar School
John Happs, Murdoch University
Tim Hardy, University of Canberra
Christina Hart, Monash University
Elizabeth Hazel, University of Technology, Sydney
Garry Hoban, Charles Sturt University
Lawrence Ingvarson, Monash University
Beverley Jane, Deakin University
Valda Kirkwood, University of Melbourne
John Loughran, Monash University
Sue McNamara, Monash University

(viii)
Carmel McNaught, University of Melbourne
Cam McRobbie, Queensland University of Technology
Cliff Malcolm, Curriculum Corporation, Melbourne
Marjorie Martin, Deakin University
Michael Matthews, University of Auckland
Barry Newman, University of New South Wales
Jeffrey Northfield, Monash University
John Pearson, University of Waikato
Jeff Richardson, Monash University
Glenn Rowley, Monash University
Lyn Schafer, University of Technology, Sydney
Renato Schibeci, Murdoch University
Brendan Schollum, Orewa College, New Zealand
Richard Selleck, Monash University
Cathy Shannon, Monash University
Shirley Simon, King’s College London
Keith Skamp, University of New England
Robin Small, Monash University
Paul Strube, University of South Australia
David Symington, Deakin University
P. K. Tao, University of Hong Kong
David Treagust, Curtin University of Technology
Richard Trembath, Monash University
Russell Tytler, Deakin University
John Walker, Monash University
Richard White, Monash University

Word Processing

File Conversion Group:
Paul Gardner; Sharon Fitzgerald; John Loughran; Gordon Perkins

RISE papers:
Carol Keddie

Author correspondence:
Bev Schneider, Heather Phillips & Joy Rose

Business correspondence:
Cath Henderson

Printing
Monash University Printing Services
GUIDELINES FOR AUTHORS FOR THE PREPARATION OF PAPERS AND DISKS FOR RESEARCH IN SCIENCE EDUCATION

SUBMISSION TO CONFERENCE ORGANISERS

Hard copies only are required for submission to the ASERA conference organisers. Setting out can be in the same format as required for publication, or in some other format if you prefer.

SUBMISSION TO EDITOR FOR PUBLICATION IN RISE

Papers submitted to the editor for publication in RISE should be on disk, with three hard copies. See Word Processing and Setting Out below. Papers should be submitted within the month following the conference.

Word Processing

Software We use WordPerfect 5.1, but other software is acceptable, as we have the facilities to convert Apple and IBM files.

Format If you wish to see what your paper will look like in RISE format, set your format at 80 characters per line, single spacing, page number centred at top, followed by one blank line, and 50 lines of text. To make your own hard copy of this, you will need a small print font. We use Times Roman 10pt.

N.B. It is the primary responsibility of authors to ensure that copy has been thoroughly proof read. Please ensure that typographical errors have been corrected, and that there is agreement between the references in the text and the final reference list.

Setting Out

Length Each paper is to have a maximum length of 10 pages in RISE format (approximately 42000 bytes). This length includes text, reference list and pages containing diagrams, figures and tables. All pages are to be numbered consecutively.

Title Article title in capitals, author(s) in lower case, affiliated institution in lower case, all centred. Do not include departments, faculties, campuses or addresses here.

e.g. A LEARNING MODEL FOR SCIENCE EDUCATION
Mary Smith and John A. Smith
University of Central Australia Alice Springs College

Abstract Include an abstract of between 100-200 words, headed ABSTRACT (centred), immediately following the title; the whole abstract should be indented.

Tables Tables should be given arabic numbers, with centred, capital headings

TABLE 2

CORRELATIONS BETWEEN ANXIETY AND RUNNING SPEED

Simple tables should be incorporated directly into the word-processed text. Complex tables which cannot be treated in this way should be supplied separately as camera-ready copy (maximum size 22.5 x 13.5 cm) with appropriate space left in the body of the text.

Indented dot points Use asterisks, in preference to letters, numbers, or dots to mark indented dot points, e.g.
The project involved
* a conceptualization phase...
* an implementation phase...

Figures Figures should be supplied as camera-ready copy (maximum size 22.5 x 13.5cm). Try to ensure good quality copy: dot-matrix graphics printed in pale-grey ink often reproduce poorly! Leave appropriate space in the text. Figure descriptions should be below the figure and centred.

Fig. 3 A model of the learning process

Headings Main headings should appear in CAPITALS in the centre of the page. Subheadings should be in lower case, underlined, and left-justified. They should be used at regular intervals to assist in the reader’s comprehension of the text. Section and subsection headings should not be numbered.

Footnotes are not to be used.

References References to journals and books should follow the APA guidelines. In the body of the paper references should appear, for example, as Bernstein (1971), or Fisher and Fraser (1983). References in parentheses are presented as (White & Tisher, 1986). These references should be placed in the reference list as follows:

Please note
* author’s name in lower case
* ampersand (&) symbol for joint authorship
* lower case for article or book titles
* upper case initials for journal titles, underlined
* volume number of journal underlined
* book titles underlines
* city of publication followed by colon, followed by publisher
* two-space indentation below each author.

In line with current APA practice, reference notes should not be used. References may include conference papers. Other material such as personal communications and unpublished manuscripts should be described as such in the body of the text, without further referencing.

Author(s) At the end of the paper, include a brief note in the following form:

Author

DR. MARY SMITH, Senior Lecturer, Faculty of Education, University of Central Australia, Alice Springs, NT 0870. Specializations: biotechnology curriculum development, biology teacher education.
ABSTRACTS AND RESEARCH NOTES

VCE CHEMISTRY AS A CURRICULUM INNOVATION

Deborah Corrigan¹, Peter Fensham¹, Jennifer Sheed² and Rosemary Hutchinson³
¹Monash University ²LaTrobe University College of Northern Victoria ³Catholic College, Bendigo

RESEARCH NOTE

The Victorian Certificate of Education (VCE) Chemistry course was introduced in 1990. It was part of a complete restructure of the post-compulsory years of secondary schooling in Victoria and was intended to cater for a much wider spectrum of the 17+ age cohort than the previous chemistry course.

In this study, we wished to focus on the dissemination process of introducing VCE Chemistry and how the meaning of its message about curricular changes was shared. We set out to design a study that would answer the following questions:

* What meanings did teachers attach to major changes in the VCE curriculum?
* How do meanings change?
* Which meanings became shared through dissemination alone and which seemed to need other experiences?

We were aware that to have any hope of getting at the meaning others attach to words and messages it is necessary to listen not simply to answers to questions but also to explanations of these answers. This meant clinical questioning or open-ended interviews with deliberate probing as the means of data collection.

We were more interested in the sorts of meanings that might exist and their changes than we were in how many teachers had which meaning. Quota sampling within our resources rather than representative sampling was thus the way we identified teachers to interview.

METHOD

There were three distinct phases to this project. Phase 1 involved interviewing the course study writers in 1989 to gain an appreciation of the meaning they attached to eight aspects of the curriculum change that were either novel or much changed in the intentions of the writers. These were: content; contexts and focal questions; work requirements; practical work; assessment; changes in teaching; science, technology and society approach and student learning.

The second phase involved interviewing 32 teachers from both country and metropolitan Victoria. This phase was undertaken in late 1989, fifteen months before teachers were to teach this course. Several workshops and seminars to communicate the nature of the new course had been held that year,
The third phase involved interviewing 30 teachers who had now taught at least one year of VCE Chemistry. This phase was undertaken in late 1991 and early 1992. Some were from phase 2; others were first-year and experienced teachers who had not been a part of the earlier phases of the project.

FINDINGS

Three new aspects of VCE Chemistry, namely contexts, focal questions and work requirements, are used to illustrate what was achieved in this research.

Contexts
Chemistry courses throughout the world differed little in the actual content that was taught. The major change was a contextual approach: the way things were taught in the classroom. This change seemed to be quite well recognized by teachers as early as 1989, fifteen months before they were to teach this course.

Phase 3 teachers’ responses to contexts varied. The use of the term “context” differed, and this may be in part due to its obvious absence from the Chemistry Study Design document.

Focal Questions
The intentions of the study design with respect to the use of focal questions are to define the area of study in terms of the context of chemistry, technology and society. The intentions are not to define the chemical phenomena, knowledge, concepts or activities. These aspects do need to be considered, however, in order to resolve the focal questions.

The term “focal questions” was not identified by any of the study writers. The study writers constantly refer to the idea of “contexts” and yet this term is a notable exclusion from the formal study design document. The formal document formulated by the Field of Study Committee (FOSC) refers only to “focal questions”. These are not synonymous terms and this highlights the difficulty that exists when trying to share meaning between many different groups.

When asked what they thought focal questions were, teachers in 1989 offered a wide range of responses. At this stage, it appeared to the researchers that some teachers read and listen to VCE information quite differently from others. Some had a teacher-centred approach to this new course. These were the ones who had difficulty in seeing the purpose of focal questions.

Alternately there were teachers who saw the VCE, the sequence of things, the focal questions and so on as being for the students. They had the idea that these features would make learning different, better or easier.

Teachers in the third phase still held diverse views about focal questions. The purpose of the focal questions had become much clearer with experience, but the use of them in terms of what was happening in the classroom varied significantly.
Work Requirements
The study writers took the prescriptive element of work requirements being common to all VCE subjects as an opportunity to force teachers to focus on how they and their students learn. The work requirements imposed on teachers the methodology they were to adopt. The teachers would find it very difficult to reorganize their old HSC course to fit the new structure.

Many phase 2 teachers were resentful of this study design because they believed it was imposing on teachers the way they should teach. Once again the polarization between teachers who see themselves as teachers and those who see themselves as facilitating learning was highlighted.

Phase 3 teachers' experience of work requirements meant that generally there had been acceptance of the new strategies incorporated in work requirements as useful mechanisms for teaching in some cases and learning in others. There was still a sense of outrage that professional teachers were being told 'how to teach'.

CONCLUSION

The difficulty of sharing meaning of curriculum intentions between different groups is highlighted in this study. The acceptance of the novel features of the Chemistry Study Design is mixed. The longitudinal nature of the study helped to identify the difficulty teachers had in understanding the meaning of these novel features although the experiences of teaching units in the VCE chemistry course have enabled some teachers to shift in their construction of the meaning of the words and messages around them.

REFERENCES

AUTHORS

DEBORAH CORRIGAN, Lecturer, Faculty of Education, Monash University, Clayton 3168. Specializations: chemistry and science education, technology and industry links with science in schools.

PETER FENSHAM, Professor of Science Education, Monash University, Clayton 3168. Specializations: science and technology curriculum, environmental education, educational disadvantage.

JENNIFER SHEED, Lecturer, Faculty of Education, LaTrobe University College of Northern Victoria, Bendigo 3550. Specializations: curriculum change, science career paths.

THE EFFECT OF QUESTION FORMAT IN REVEALING THE QUALITY OF STUDENT LEARNING OF SOME BIOLOGICAL CONCEPTS

Lynda J. Creedy
University of New England.

RESEARCH NOTE

The SOLO (Structure of the Observed Learning Outcome) taxonomy has been used to assess the quality of students' responses in various fields for both instructional and assessment purposes. It has also been proposed as a logical means of breaking down the general aims of science education into specific classroom aims and activities and for providing a reliable means of criterion-based assessment (Collis & Biggs, 1989; Pallett & Rataj, 1992). This research note describes the results of the initial phase of a larger study of the use of the SOLO taxonomy to evaluate students' understandings of some concepts basic to the study of senior secondary biology.

Both open and closed (superitem) format questions have been used when investigating student understanding in a number of subject areas. The 'open' format questions encourage students to give their 'best' answer without describing the required structure. The 'closed' format questions are framed in such a way that students are at the least directed to structure their answers in a certain way, namely, conforming to the targeted SOLO level. The intention is to obtain the best answer a student is capable of giving and thereby approximate that student's level of understanding in that topic. Research in the use of superitems in mathematical problem solving (Wearne & Romberg, 1977) indicated that the superitem structure provided a more refined measure of students' abilities and yielded more information about these abilities than open-ended questions. If the students' best responses are required, which is the best format to use? This phase of the project was designed to compare the quality of response of students to the two question formats and answer two questions:

* Do open style questions yield responses which underestimate the true level of understanding of a student?
* Do closed style questions provide a prompting effect and thereby secure the student's best answer?

The subjects for this study were 14 Diploma of Education students in a senior secondary science methods unit. During the week following the administration of the test questions, students were interviewed to clarify their understanding of some of the questions and to examine their beliefs about the kind and amount of information required for satisfactory completion of each question. They were then asked to compare the open format questions with the last superitem question to find out if they perceived the questions to require answers of different quality.
Test Questions

Open format: These questions were presented in standard essay question format in which student were asked to supply as much information as possible. There were three questions, each centering on a different concept: natural selection, biogeochemical cycles and food webs/biomass pyramids.

Closed format: The closed items were designed according to the SOLO superitem format (Collis & Davey, 1986). Three superitems in biology were constructed based on a previous trial and covered the same concept areas as the open format questions.

After scoring the students’ responses on the basis of correctness, answers to both superitem questions and open format questions were scored according to their structure: they were assigned to SOLO levels according to established criteria. Superitem response patterns were examined using Guttman Scaling. The results demonstrated that within the superitems there does seem to be prompting occurring. No responses were scored as extended abstract, however, so under the conditions of this study, the superitem structure does not seem to elicit students’ best responses. This is most clearly seen when the structure of ‘extended abstract’ question of superitem is compared to that of the open question. Most responses to open questions were of a higher structural level than those responding to the superitem questions. The results of this study demonstrated that question format does appear to effect the SOLO level of response of this group of students. If the SOLO Taxonomy is to be used in the setting of specific teaching objectives and as a means of criterion based assessment such effects need to be considered.

REFERENCES

AUTHOR

DR. LYNDA CREEDY, Lecturer, Department of Science, Technology and Mathematics Education, University of New England, Armidale, NSW 2351. Specializations: science and technology, biology teacher education.
Images of Science Teaching: An Exploration of the Beliefs of Preservice Secondary Science Teachers

Annette Cunliffe
Australian Catholic University Queensland

Abstract

Science graduates who enrol in a preservice Graduate Diploma of Education bring with them many years of experience as learners of science. These will have enabled them to develop implicit theories about what a science teacher is and does. Such implicit theories almost certainly affect the process of becoming a teacher, and may prove persistent despite the input from University and school during the Dip. Ed. year and beyond. This paper presents the research method and results obtained from a group of graduates on entry to their Diploma course. Concept maps and Repertory Grid interviews were obtained from eleven graduates, with varying life experiences. The paper presents analyses of these and explores emerging themes.

Author

Sr Annette Cunliffe, Lecturer in Science Education, Australian Catholic University Queensland, P.O. Box 247, Everton Park, Q. 4053. Specialisations: reflective teaching, general science and biology, curriculum and assessment.
TEXTBOOK TREATMENTS AND STUDENTS' UNDERSTANDING OF ACCELERATION

Gloria Dall'Alba¹, Eleanor Walsh², John Bowden¹, Elaine Martin¹, Geoffrey Masters³, Paul Ramsden⁴, and Andrew Stephanou⁴.

¹Royal Melbourne Institute of Technology, ²LaTrobe University, ³Australian Council for Educational Research, ⁴University of Melbourne.

A single science textbook often provides the syllabus for courses at upper secondary and tertiary levels, and may be used as a principal source of information or explanation. The research reported in this paper challenges such practices. The ways in which the concept, acceleration, is treated in physics textbooks is compared with understandings of the concept demonstrated by final year secondary (year 12) and first year university students. Some students' understandings are shown to be incomplete in ways that parallel misleading or inaccurate textbook treatments of the concept.

In addition to misleading or inaccurate statements, the limitations of some textbook treatments of acceleration were found to include: lack of attempts to make explicit relationships with other concepts; failure to point out when it is appropriate to use particular definitions or that an alternative definition might be more appropriate in specific situations; inclusion of operational definitions without conceptual explanations; and a focus on quantitative treatments while overlooking the development of qualitative understanding. Two principal aspects that distinguished the ways in which the students understood acceleration were identified: the relation between acceleration and velocity; and the relation between acceleration and force(s). The results of the study have implications for teaching and, in particular, for the use of textbooks in teaching. These implications are discussed in the paper.

This paper has been accepted for publication in the Journal of Research in Science Teaching. Copies are available from Gloria Dall'Alba, ERADU, RMIT, GPO Box 2476V, Melbourne. Vic. 3001.
WHERE ARE THE SCIENCE AND MATHS TEACHERS?
A FIFTEEN YEAR FOLLOW-UP STUDY.

Rod Fawns
University of Melbourne

RESEARCH NOTE

Purpose and Summary
Facing challenges to the efficacy of end-on teacher education has led me to ask serious questions about where the responsibilities of teacher educators to their students lie. Would graduate students' long term career interests and those of society at large be best served by a change in the locus of teacher training from universities to schools?

Information collected in questionnaire and interviews with students who had enrolled in mathematics and science at Melbourne University points to the limits of the "practical" argument that the professionalization of science teaching lies in substantially more school practice.

Method and Sample
A questionnaire was mailed to the 425 of 535 full-time Science/Maths Dip. Ed. graduates from the years 1976-90 for whom an address could be found. Of these, 268 (64%) were returned, and at least 50% of the graduates in each year group were in the sample. The gender balance in the sample was comparable with the original class lists; there was no reason to believe that the sample was unrepresentative. Telephone and site interviews were conducted with those who indicated interest.

Data
Information was collected about personal and family background, undergraduate studies, method affiliation, career choices and the value attributed to their education studies in their chosen work. Only some data about careers can be reported here.

Careers of Science and Mathematics Teachers
The average age of the group was 32 years (compared to the state average of about 45 years). The years covered by the survey were years of virtual full employment for science teachers. Twelve percent never taught, choosing an alternative career from the outset. The others have taught for an average of 5.7 years. In 1991, of the group that has taught, 46% had left full-time teaching. Table 1 shows the employment in 1990 for the 262 of the 268 who provided answers to this question.

Of all those teaching in 1991, 8% were employed in Catholic schools, 24% in independent schools, 19% in Victorian country state, 36% in north/west suburban and 14% in south/east suburban Melbourne state schools. From a peak of 77% of former students teaching secondary full-time in 1984 the figure has dropped to 42% in 1991. In 1984 63% of the whole sample were employed in state schools, but the figure fell steadily to 39% by 1991, reflecting more frequent departures from teaching. Amongst the alternative careers were: lecturing in the post-secondary education and training sector, in the health sector; sales representative, pharmacist, chiropractor, dentist, psychologist, rehabilitation counsellor, in finance, insurance and banking, in technical services and training; in computer systems; geologist, chemist, meteorologist,
communication engineer, embryologist. Ninety percent of all respondents felt their occupation demanded skill in communication and personnel management and 74% felt it drew on their maths/science background.

TABLE 1

<table>
<thead>
<tr>
<th>Employment</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching fulltime</td>
<td>124</td>
<td>42</td>
</tr>
<tr>
<td>Teaching parttime</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Home duties (full)</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Research/study</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>TAFE/tertiary teaching</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>Private enterprise</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Public service</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Self employed</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Factors Important in Career Choices

Excluding the 34 who wanted to be at home fulltime or parttime, 104 of the 228 employed have either never taught or have left teaching. For them the most important factors were "the opportunity for a more interesting career elsewhere" (73%) and "better pay elsewhere" (50%). The next most important factors were "difficulty in maintaining discipline in class" (32%) and the "low public esteem of teaching" (30%). Those teaching full-time in 1991 (n=124) mentioned a number of factors in their continuing commitment. "Response from students to my efforts", "an interest in school science/maths", "an interest in teaching as a profession", "an interest in adolescents", and "security of income" were regarded as important by more than 80% of this group. Amongst the factors rated as least important were, "response from the local community", "superannuation", "level of income" and "response from other teachers to my efforts". Asked about their future plans to teach the whole group (n=268) gave the responses shown in Table 2 to the questions, "Do you plan to be teaching next year, in 5 years time and in 10 years time?"

TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>Undecided</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next year?</td>
<td>54</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>Five years time?</td>
<td>37</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Ten years time?</td>
<td>24</td>
<td>52</td>
<td>24</td>
</tr>
</tbody>
</table>

Some were interested in returning to teaching and many more would be looking after children of their own in the next 10 years. Only 25% had completely abandoned teaching in the medium to long term. Evidence for a continuing vocational interest is provided by responses to a question about the level of satisfaction with their choice of
career. The teachers as a group were slightly more satisfied than those employed elsewhere (Table 3).

TABLE 3

LEVEL OF CAREER SATISFACTION
(figures %)

<table>
<thead>
<tr>
<th></th>
<th>not at all/quite</th>
<th>somewhat</th>
<th>highly satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Full Time n=124</td>
<td>12</td>
<td>52</td>
<td>36</td>
</tr>
<tr>
<td>Not Teaching n=100</td>
<td>23</td>
<td>46</td>
<td>31</td>
</tr>
</tbody>
</table>

In interviews many who had left teaching said they still found the idea of teaching appealing. They felt the Diploma of Education program most helped them by expanding their view of maths and science, increasing their understanding of public education issues and in new knowledge gained. In these there were no discernible differences between those currently teaching and in schools and those employed elsewhere. Fewer than 20% wanted an entirely school-based Diploma of Education programme.

AUTHOR

DR. ROD FAWNS Senior Lecturer, Institute of Education, University of Melbourne, Parkville, 3052. Specializations: studies in twentieth century science education in Australia, teacher education.
TECHNOLOGY IN THE CURRICULUM: A VEHICLE FOR THE DEVELOPMENT OF CHILDREN'S UNDERSTANDING OF SCIENCE CONCEPTS THROUGH PROBLEM SOLVING.

Beverley Jane and Leanne Smith
Deakin University - Cooinda Primary School

ABSTRACT

This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools of The Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. 'Technology Studies' in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990)

REFERENCES

AUTHORS

BEVERLEY JANE, Lecturer, Faculty of Teacher Education (Primary), Deakin University, Burwood, Victoria 3125. Specializations: science and technology education, interest and attitudinal change.

LEANNE SMITH, currently at Coral Park Primary School, Hampton Park. Specialization: technology in the primary school.
DISTURBING THE BOUNDARIES:
THE SCIENCE/LITERATURE MEMBRANE

Peter Lumb and Paul Strube
University of South Australia

RESEARCH NOTE

Constructivist theories of learning have encouraged us to look for the connections learners make when information is received. In science education, we have naturally tended to concern ourselves with the connections between scientific concepts. Research is beginning to uncover the connections between incoming scientific information and non-scientific content of the mind. Concept maps have been valuable here, showing the kinds of connections that are made when such words as ‘energy’, ‘force’, and ‘living’ are explored.

From 1988 through the current year, the authors have organised a short story competition for science students in Australian secondary schools. Sponsored by the Royal Australian Chemical Institute as part of its National Chemistry Week activities, the competition is based around writing a fictional short story in which chemistry played a major role. As a result, there are now over 229 short stories to examine using content analysis techniques for the images of science and of scientists portrayed. This paper discussed some interesting revelations about the way scientists are imagined by students, and about the social world they inhabit. Attitudes, values and behaviours of (mostly) male scientists appeared consistently and clearly in student stories. These results were examined against a background of comparative research in the area of children’s perceptions of science and scientists.

About one third of the stories showed two distinct and unintegrated styles. These were a literary fiction style, for example comic book, war, adventure, mythical morality adventure, romance and adolescent social realism. These literary styles were often alongside classroom or school science textbook styles.

An objective of the competition was to stimulate imaginative interest in science, and to provoke thought among students about the ways in which science was contiguous with real and imaginative experience. Certainly, the products of this short story competition have suggested that science stories provide rich possibilities for humanistic exploration. The competition revived ideas about the ‘two cultures’; they seem clearly evident, and separate, in many of these stories. Both cultures, it seems, have much to gain if science teachers feel able to involve humanities teachers and secondary students in a joint writing enterprise. On the whole, stories from English classrooms are quite different to, and remote from stories from science classrooms. The two cultures are so distinct in many students’ minds that ideas must be written in two separate styles, which cannot be reconciled even within the one story.

AUTHORS

PETER LUMB and PAUL STRUBE, School of Nursing Studies, University of South Australia, Holbrooks Road, Underdale, SA 5032. Specializations: the language of science textbooks, relations between science and literature.
COMMUNITY INVOLVEMENT IN RESEARCH AS A FORMAL AND INFORMAL MECHANISM FOR SCIENCE EDUCATION: PROJECT EGRET WATCH

Max Maddock
The University of Newcastle and the Wetlands Centre at Shortland

RESEARCH NOTE

Informal science learning has received increasing attention in recent years but few studies have been carried out into the process of learning outside of school or into the interactions of learners with other sources of information. Informal and formal science and environmental learning takes place through community involvement in ornithological research at the Wetlands Centre at Shortland in NSW Australia, a centre for environmental education, conservation, research and passive recreation in wetland settings situated at the edge of extensive swampland in the Hunter River estuary. The Centre has classroom, library, theatrette, display, office and cafeteria facilities.

A colony of egrets on the site and colonies at other NSW locations have been the focus of Project Egret Watch, a research study into the breeding biology, ecology and migration of the egrets, which has produced publications in the scientific literature on breeding biology, ecology, migration and field techniques. Adult and school-aged volunteers assist with wing-tagging of the birds at the breeding colonies and as field observers throughout Australia and New Zealand. Feedback to volunteers, the media and to visitors to the Centre provides a vehicle for both formal and informal science and environmental education. Participating schools have their own newsletter.

Evaluation of the success of Project Egret Watch as a vehicle for learning has been informal to date, based on observational, anecdotal and participant feedback. There is a need and significant potential for a range of science education research studies related to the Project Egret Watch, in the cognitive and affective domains as well as into sociological aspects. Questions such as what specific cognitive and affective learning outcomes result in the formal, non-formal and informal domains, who is reached by the informal mechanisms operating in relation to the project, such as the media and the outreach initiatives, and what are their characteristics, are all worthy of study. A program such as Project Egret Watch would need the development and application of new measures and multiple evaluation methods.

There has been little research into the outcomes of the work of field study centres of the Wetlands Centre type. Participants in Project Egret Watch are helping with real research and contributing to results which are published in the scientific literature. The feedback to participants is couched in lay terms and often features "human interest" aspects, but attempts are made to keep it scientifically accurate and incorporate aspects of methodology and conservation outcomes as part of the broader educational objectives. The outcomes are not really measurable in traditional science education research terms.
The Wetlands Centre currently does not have the resources to undertake such studies in its own right. It is, however, interested in providing universities with access to its programs and facilities in order that such research can be carried out. There is plenty of scope for small-scale course-related studies as well as minor theses and higher degree studies. The potential for obtaining funds by joint grant applications exists. There is scope for science education research into the processes of learning and the interactions of the learners with the sources of information generated by the project, which could contribute to knowledge of informal processes of learning.

AUTHOR

DR. MAX MADDOCK AM, Associate Professor in Education, University of Newcastle, NSW 2308 and Chairman of Directors, The Wetlands Centre at Shortland, NSW 2287. Specializations: science and environmental education, biology of herons.
Research in Science Education, 1992, 22, 417 - 419

COMMUNICATION ON A PROBLEM SOLVING TASK IN COOPERATIVE LEARNING GROUPS.

Jo Sadler and Rod Fawns
University of Melbourne

RESEARCH NOTE

This research note reports preliminary findings on the development of communication amongst students working in cooperative learning groups on repeated attempts at a problem solving task. The research is part of a larger study to examine the effects of various strategies for managing student communication which is currently being conducted with Year 8 classes in six Melbourne government schools.

Data on the communication in the group were obtained by recording, transcribing and coding students’ conversations whilst they undertook a problem solving activity (Gott & Murphy, 1987). The coded results for one problem solving session for one group (Table 1) show high levels of student interaction. The task related conversations indicated that exchanges about various aspects of the task were in ratio of approximately:

\[
\text{procedures : descriptions/explanations : reconceptions and reformulations} = 4 : 2 : 1
\]

The data confirm that although the greatest concerns were for setting up and making measurements, there was significant discussion about information obtained by way of data collected and to a lesser extent how to relate the data to the broader problems posed within the investigation.

Kempa and Ayob (1991) concluded that the group work interaction rarely rose above the level of a factual information exchange about procedures. This suggests that problem solving did not really take place as a group activity. However their observations may reflect their one-shot design.

Our observations of classes and problem solving sessions conducted over an eight week period show a shift towards higher level exchange over that period. The Cooperative Learning Model of Slavin (1983) which proposed four levels of skills may explain this development.

1. Group establishment skills
2. Maintaining a functioning group
3. Skills of reflection and reasoning to formulate understanding at a deep level
4. Reconceptualising skills to stimulate reformulating understanding through new investigations and to communicate the rationale behind the conclusions.
In our longitudinal study the social-emotional needs of the group interacted with the completion of the problem solving survival task. The high level of information flow in setting up and completing the task consolidated behaviour at the first two skills levels. In early observations it appears that rather than threaten the positive social-emotional climate of the group, female students in particular, often chose not to argue for their particular beliefs, even when invited by the authors. Students appeared to be struggling to balance Slavin’s skill level 3 with the needs of skill level 2.

Later, when the same group undertook the same task for the third time, the group redesigned the investigation in an attempt to reach a satisfactory solution. This time the group sought to deal with all possibilities. The group appeared to be moving towards Slavin’s fourth level of skills required for functioning cooperative learning groups.

Teachers involved in the trials in the last two years have suggested that intra-group relations and styles of leadership in the groups are crucial factors in their operation. Preliminary observations would support Gayford’s (1992) suggestion that there are potentially important identifiable patterns of group planning and implementation.

<table>
<thead>
<tr>
<th></th>
<th>Procedures %</th>
<th>Descriptions & Explanations %</th>
<th>Reconception & Reformulation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention focussing</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offers of Assistance</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Requests for Action</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Requests for Information</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requests for Help</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other Relevant Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requests for Information</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Requests for Help</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Specific Response</td>
<td>16</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Incomplete Answer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Answers with a Question</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Counter-assertion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>52</td>
<td>30</td>
<td>16</td>
</tr>
</tbody>
</table>
Summary

There is some evidence from this study that reflectivity within cooperative learning groups develops over time. Preliminary observations suggest that Slavin’s third and fourth levels of skills, those of reflection and reasoning and reconstruction and reformulation and Kempa and Ayob’s higher levels of explanation and insight appear more advanced in groups strategically managed by teachers for such outcomes. Later analyses will permit more detailed accounts of the relationships between the teacher’s management strategies, and reflection within groups of different gender composition.

REFERENCES

AUTHORS

MS JO SADLER, Lecturer, Institute of Education, University of Melbourne, Parkville, 3052. Specializations: science teacher education.

DR ROD FAWNS, Senior Lecturer, Institute of Education, University of Melbourne, Parkville, 3052. Specializations: studies in twentieth century science education in Australia, teacher education.
Selected refereed papers from the Twenty-fourth Annual Conference of the Australasian Science Education Research Association, held at the University of New England (Northern Rivers campus), Lismore, NSW, 8-11 July, 1993.

EDITOR
Paul L. Gardner

DEPUTY EDITOR
John Loughran

BUSINESS MANAGER
Richard T. White

General correspondence about this publication should be sent to Dr. P. L. Gardner; subscriptions and orders for back issues should be sent to Professor R.T. White. Address: Faculty of Education, Monash University, Clayton, Vic. Australia 3168.

Copyright: 1993 Australasian Science Education Research Association
Published by the Australasian Science Education Research Association.

ISSN 0157-244X
CONTENTS

Editorial comments (vi)
Review Panel (viii)
Guidelines for authors (x)

APPLETON, K. What makes lessons different? A comparison of a student’s behaviour in two science lessons. 1

BEARD, J., FOGLIANI, C., OWENS, C., & WILSON, A. Is achievement in Australian chemistry gender based? 10

BYRNE, A. & McROBBIE, C.J. Towards becoming a reflective practitioner: what to know and where to find it. 15

CRAWFORD, G. & ZEEGERS, Y. Sci-Tec: evaluating a non-deficit model of in-service. 24

CREEDY, L.J. Student understandings of natural selection. 34

CRONIN, P., WILLIAMS, G. & RENNIE, L. Development of a hypertext computer program to enhance the scientific writing skills of upper secondary physics students. 42

CROSS, R.T. & PRICE, R.F. "The approaching storm": ideology, power and control. The National Science Teachers Association curriculum development in the United States. 51

DORMAN, J.P., McROBBIE, C.J. & FRASER, B.J. Assessing the psychosocial environment of science classes in Catholic secondary schools. 61

FLEER, M. & HARDY, T. How can we find out what 3 and 4 year olds think? New approaches to eliciting very young children’s understandings in science. 68

FRANCIS, R. & HILL, D. Developing conceptions of food and nutrition. 77

GARDNER, P.L. Textbook representations of science-technology relationships. 85

GAULD, C. The historical context of Newton’s Third Law and the teaching of mechanics. 95

HACKLING, M.W. & GARNETT, P.J. Effect of context and gender on application of science investigation skills. 104

HAIGH, M. "Hands on — minds on": introducing openness into senior biology practical work. 110
JEANS, B. & FARNSWORTH, I. Post-primary science teachers' perceptions of primary science education.

JONES, B.L., COLLIS, K.F. & WATSON, J.M. Towards a theoretical basis for students' alternative frameworks in science and for science teaching.

KEARNEY, D. A decade of debate on the schooling of girls in physics: where are we now?

KLINDWORTH, A. Chemical apathy or hysteria: what role for education?

LEVINS, L. & PEGG, J. Students' understanding of concepts related to plant growth.

McCOLL, P. Teaching about theories of light in Year 12 Physics: an historical approach

McROBBIE, C. & ENGLISH, L. A case study of scientific reasoning.

NORTHFIELD, J. The relevance of "recent and relevant" experience.

O'BRIEN, J. Action research through stimulated recall.

ORMISTON-SMITH, H. An alternative model for textbook formation.

PALMER, D. How consistently do students use their alternative conceptions?

RITCHIE, S.M. The role of classroom research projects in the preparation of science teachers.

SADLER, J. & FAWNS, R. Facilitating practitioner research into strategies for improving communication in classroom groups: action research and interaction analysis — a reconciliation?

SEARLE, P. A study of force concepts in tertiary level students.

SEGAL, G. & COSGROVE, M. "The sun is sleeping now": Early learning about light and shadows.

SYMINGTON, D. & MACKAY, L. Response to the Discipline Review of Teacher Education in Mathematics and Science.

TREATGUST, D. The evolution of an approach for using analogies in teaching and learning science.

TULIP, D. & COOK, A. Teacher and student usage of science textbooks.

TYTLER, R. Developmental aspects of primary school children's construction of explanations of air pressure: the nature of conceptual change.

VAN ROOY, W. Teaching controversial issues in the secondary school science classroom.

WEBB, C. Teacher perceptions of professional development needs and the implementation of the K-6 Science and Technology syllabus.

WOOD, R. Taking the plunge into the gene pool: teaching and learning in genetics.

Abstracts and Research Notes

CORRIGAN, D. & LOUGHRAN, J. An integrated science pre-service teacher training course: a focus on assessment.

FERRY, B. Problems with implementing science and technology in primary schools in N.S.W.

KAVOGLI, Z.Z. The role of group work using computational exploratory learning environments within children's learning in science.

McCLAFFERTY, T. & RENNIE, L. Learning in science centres and science museums: a review of recent studies.

WILSON, J. Students' and teachers' explanations of chemical equilibrium.

WOOLNOUGH, J.A. Girls, boys and conceptual physics: how senior secondary students have responded to a conceptual physics course.
EDITORIAL COMMENTS

The papers in this issue of Research in Science Education are the more tangible outcomes of yet another successful ASERA conference, held for the first time at the Northern Rivers campus of the University of New England in Lismore. (Also for the last time, since the campus is in the process of disamalgamating with UNE at Armidale; it will soon be a separate university, with its own name.) This is an appropriate place to record our thanks to Keith Skamp and his committee for their superb efforts in organising the conference program so effectively.

About 80 papers were presented at the conference; 58 were submitted for publication, and most of these (about 80%) have been published here. As in the past few years, all papers have been independently evaluated by two reviewers, and I would like to express my appreciation to the large number of colleagues (listed on pages viii and ix) for their thoughtful assessments and prompt reviews. Eagle-eyed readers may detect an improvement in printing quality this year. RISE continues to keep in step with the technological revolution: for the first time, the masters have been prepared with a laser printer.

The Lismore conference took an important decision and implemented an idea first raised in Perth in 1990: to develop RISE into a regular journal, with several issues per year. Cam McRobbie of the Queensland University of Technology readily offered to attempt to produce two non-conference issues of RISE in 1994. All of us in ASERA wish him well in this endeavour. The success of this innovation will depend on two factors: the willingness of ASERA members and other science education researchers to use RISE as an outlet for our publications, and the willingness of all subscribers to pay the increased costs of an expanded journal.

In the opening article in the 1993 issue of Studies in Science Education, titled "Getting serious about priorities in science education", Myron Atkin and Jenifer Helms refer to the clamour of clashing claims (my alliterative phrase, not theirs) upon the science curriculum:

New or revised goals are announced regularly and often. Teach science to improve economic competitiveness. Teach it to help people make wise choices as consumers. Teach it to improve personal health. Teach it to protect the environment. Teach it to help prepare the scientists and engineers the country needs. And above all, whatever the purpose of teaching science in the schools, it should be for all the students.

Each goal seems worthy and is usually embraced by both science education professionals and the public. Then new goals come along. Teach science to foster problem-solving ability? Yes. Teach it to prepare people for jobs? Yes. Teach it to cultivate critical thinking? Yes. These too, are added to the list.

To these American voices, we can easily add some Australian ones. Teach science in the kindergarten and primary school, to encourage early interest. Teach science according to nationally-agreed guidelines, to encourage national cohesion. Teach science in ways that are gender-inclusive. Teach more science to teachers, so that they can teach it better to students.

(vi)
It is of course possible to view this collection of demands in a positive light. Science education is complex, and it plays an important role in modern society. It is therefore hardly surprising if we find a rich variety of claims for attention on the nation's science curricula. The papers included in this issue of Research in Science Education hold up a mirror which reflects that rich variety. Students' misconceptions in biology. Gender bias in chemistry. Computer usage in science teaching. Science-technology relationships. Science in the kindergarten. Food and nutrition. Science investigation skills. Practical work in biology. In-service courses for teachers. Chemical pollutants. Historical approaches in physics. Reasoning skills. Arguing by analogy. Teaching about controversial issues. These and other themes are all represented in this volume.

However, Atkin and Helms also sound a warning. There are so many different demands upon the curriculum that the public -- and science educators, too -- are "engulfed by undifferentiated statements of purpose that in their totality are both confusing and unrealistic". One important consequence is that many goals turn out to be impossible or ignored. This may "diminish the credibility of the profession because the public does not know what really to expect, and teachers don't know what to teach". They argue that the science education profession must learn how to identify priorities and to make choices; their essay is an attempt to frame guidelines towards that end. Their long and thoughtful paper contains much that will challenge science education researchers in Australia and New Zealand. Studies of the conflicting pressures on science education curricula in this part of the world, and of the development of approaches to their resolution, might form the basis for future papers in this journal.

Paul Gardner
Editor
Monash University
November, 1993
REVIEW PANEL

Editor: Paul Gardner, Monash University
Deputy Editor: John Loughran, Monash University

Ken Appleton, University of Central Queensland
Neil Baumgart, University of Western Sydney
Margaret Bearlin, University of Canberra
John Bigelow, Monash University
Alan Bishop, Monash University
Robert Bucat, University of Western Australia
Jim Butler, University of Queensland
Peter Clarkson, Monash University
John Cleverley, University of Sydney
Brian Coles, Palmerston North College of Education
Deborah Corrigan, Monash University
Mark Cosgrove, University of Technology, Sydney
Ruth Coulson, University of Melbourne
Graham Crawford, University of South Australia
Chris Dawson, University of Adelaide
Eddy de Jong, Monash University
John Edwards, James Cook University
Peter Fensham, Monash University
Brian Ferry, University of Wollongong
Marilyn Fleer, University of Canberra
Helen Forgasz, Monash University
Michael Forret, University of Waikato
Rod Francis, Charles Sturt University
Denis Goodrum, Edith Cowan University
Richard Gunstone, Monash University
Mark Hackling, Edith Cowan University
Mavis Haigh, Auckland College of Education
Tim Hardy, University of Canberra
Christina Hart, Monash University
Don Hutton, Monash University
Lawrence Ingvarson, Monash University
Edgar Jenkins, University of Leeds
Dorothy Kearney, Latrobe University
Valda Kirkwood, University of Melbourne
Lesley Levens, University of New England
Sue McNamara, Monash University
Carmel McNaught, University of Melbourne
Cam McRobbie, Queensland University of Technology
Marjorie Martin, Deakin University
Michael Matthews, University of Auckland
Ian Mitchell, Monash University
Geof Molloy, Monash University
Ian Napper, University of South Australia
Barry Newman, University of New South Wales
Word processing

file conversion
Paul Gardner, John Loughran, Sharon Fitzgerald, Beverley Schneider

author correspondence
Beverley Schneider, Heather Phillips, Janine Bryden

business correspondence
Cath Henderson

Printing
Monash University Printing Services
GUIDELINES FOR AUTHORS FOR THE PREPARATION OF
PAPERS AND DISKS FOR RESEARCH IN SCIENCE EDUCATION

SUBMISSION TO CONFERENCE ORGANISERS

Hard copies only are required for submission to the ASERA conference organisers. Setting out can be in the same format as required for publication, or in some other format if you prefer.

SUBMISSION TO EDITOR FOR PUBLICATION IN RISE

Papers submitted to the editor for publication in RISE should be on disk, with three hard copies. See Word Processing and Setting Out below. Papers should be submitted as early as possible within the four weeks following the conference.

Word Processing

Software We use WordPerfect 5.1, but other software is acceptable, as we have the facilities to convert other files.

N.B. It is the primary responsibility of authors to ensure that copy has been thoroughly proof read. Please ensure that typographical errors have been corrected, and that there is agreement between the references in the text and the final reference list.

Setting Out

Length Each paper is to have a maximum length of 10 pages in RISE format (approximately 42000 bytes). This length includes text, reference list and pages containing diagrams, figures and tables. This is a strict requirement and papers which exceed it will not be accepted for review. All pages are to be numbered consecutively. If you wish to see what your paper will look like in RISE format, set your format at 90 characters per line, single spacing, page number centred at top, followed by one blank line, and 50 lines of text. To make your own hard copy of this, you will need a small print font. We use Helvetica 9pt (AE)

Title Article title in capitals, author(s) in lower case, affiliated institution in lower case, all centred. Do not include departments, faculties, campus or addresses here, e.g.

A LEARNING MODEL FOR SCIENCE EDUCATION

Mary Smith & John A. Smith
University of Central Australia Alice Springs College

Abstract Include an abstract of between 100-200 words, headed ABSTRACT (centred), immediately following the title; the whole abstract should be indented.

Tables Use arabic numbers, with centred, capital headings above the table, e.g.

TABLE 2

CORRELATIONS BETWEEN ANXIETY AND RUNNING SPEED

Simple tables should be incorporated directly into the word-processed text. Complex tables which cannot be treated in this way should be supplied separately as camera-ready copy (maximum size 22.5 x 13.5 cm) with appropriate space left in the body of the text.

($)
Indented dot points. Use asterisks, not letters, numbers, or dots to mark indented dot points, e.g. The project involved
 * a conceptualization phase...
 * an implementation phase...

Figures. Figures should be supplied as camera-ready copy (maximum size 22.5 x 13.5cm). Try to ensure good quality copy: dot-matrix graphics printed in pale-grey ink often reproduce poorly! Leave appropriate space in the text. Figure descriptions should be below the figure and centred e.g.

Fig. 3 A model of the learning process

Headings. Main headings should appear in CAPITALS in the centre of the page. Subheadings should be in lower case, underlined, and left-justified. They should be used at regular intervals to assist in the reader’s comprehension of the text. Section and sub-section headings should not be numbered.

Footnotes are not to be used.

References. References to journals and books should follow the APA guidelines. In the body of the paper the references should appear, for example, as Bernstein (1971), or Fisher and Fraser (1983). References in parentheses are presented as (White & Tisher, 1986). These references should be placed in the reference list as follows:

Please note
 * author’s name in lower case
 * ampersand (&) symbol for joint authorship
 * lower case for article or book titles
 * upper case initials for journal titles, underlined
 * volume number of journal underlined
 * book titles underlined
 * city of publication followed by colon, followed by publisher
 * two-space indentation below each author
 * no blank lines between references.

In line with current APA practice, reference notes should not be used. References may include conference papers. Other material (personal communications, unpublished manuscripts) should be described as such in the body of the text, without further referencing.

Author(s). At the end of the paper, include a brief note in the following form:

AUTHOR

DR MARY SMITH, Senior Lecturer, Faculty of Education, University of Central Australia, Alice Springs, NT 0870. Specializations: biotechnology curriculum development, biology teacher education.

(xi)
AN INTEGRATED SCIENCE PRE-SERVICE TEACHER TRAINING COURSE: A FOCUS ON ASSESSMENT.

Deborah Corrigan & John Loughran
Monash University

RESEARCH NOTE

All students undertaking science methods in the pre-service teacher training year at Monash University participate in an integrated science program known as Stream 3. This course has been developing for 15 years. The emphasis of the Stream 3 programme is to encourage pre-service teachers to take on responsibility for their own learning. The most recent innovation in this course is in the area of assessment strategies aimed at maximizing student learning by providing an integrated approach to assessment across method areas. These approaches are documented by students in a teaching portfolio. This paper describes some of these tasks and examine the implications for pre-service science education.

The Teaching Portfolio

In order to foster independent learning in our pre-service teachers so that they might do the same with their own students, a change in our approach to assessment seemed appropriate. We wanted students to learn from the assessment they undertook, and not just complete it as a hurdle along the way to getting their Diploma in Education. As a result, the notion of a teaching portfolio was developed. Teaching portfolios are tangible representations of what students see as their “philosophy” of teaching and learning in science.

The use of portfolios in the Stream 3 programme is intended primarily as a learning procedure that would also result in a final product that pre-service teachers could use with prospective employers. The process of preparing a teaching portfolio and refining it after receiving feedback allows students the opportunity to reflect on their own ideas and attempt to present them in a coherent way. The process is essential for the learning to occur. The end product allows pre-service teachers to present documentation to prospective employers that could provide important evidence in selection decisions. The product also provides a prospective employer with a starting point for discussion with the pre-service teacher. The discussion is much more likely to focus specifically on the abilities, views and skills of the pre-service teacher.

The purpose of the portfolio is for students to think about their philosophy of what it means to be a science teacher. In this case the development of attitudes and views is as valuable as the development of skills and abilities. The portfolio is designed to cover a range of tasks and activities that might reflect an individual’s approach to science teaching.
To support the development of the teaching portfolios, students are asked to undertake a number of activities, including:

* interviewing students and teachers about teaching and learning;
* undertaking research, perhaps involving a research project, in a familiar or unfamiliar content area;
* preparing and experiencing aspects of Frameworks and VCE curriculum design;
* experiencing teaching in a diversity of styles incorporating a number of teaching strategies such as PEEL strategies or co-operative group work;
* preparing a media file of newspaper clippings, videos etc. for use in teaching science;
* demonstrating how they might plan, organize and conduct an excursion or site visit; and
* using various software programs in science education.

Researching the Teaching Portfolio Strategy

As a means of gauging this assessment approach, a small research project was set up to monitor students' views. A sample of eight students (out of 30) volunteered to participate in the research project. Participation required the students to be interviewed at three stages throughout 1993 by an independent interviewer. At the time of writing this paper only the first of three interviews has been undertaken.

One of the difficulties for the lecturers in this process has been trying to explain what a portfolio is to the students. The idea of the portfolio only becomes clear to the students as they actually undertake the tasks. When this is coupled with students' previous experiences of assessment from their own schooling and undergraduate careers where they have clear notions of what is expected in an examination or an essay, it takes a great deal of effort to get them to "do" the tasks first. It is only after trying out these tasks, obtaining feedback from their tutorial groups and reflecting on this feedback, that a clear picture of what a portfolio item might look like emerges.

AUTHORS

DEBORAH CORRIGAN, Lecturer, Faculty of Education, Monash University, Clayton, Vic. 3168. Specializations: chemistry and science education, technology and industry links with science curriculum.

JOHN LOUGHRAN, Lecturer, Faculty of Education, Monash University, Clayton, Vic. 3168. Specializations: science education, reflection, curriculum and evaluation.
PROBLEMS WITH IMPLEMENTING SCIENCE AND TECHNOLOGY IN PRIMARY SCHOOLS IN N.S.W.

Brian Ferry
University of Wollongong

RESEARCH NOTE

This study identified difficulties faced by primary teachers as they implemented a new curriculum in science and technology education in N.S.W. A survey instrument was tried out at two schools, and refined after consultation with twenty four primary teachers enrolled as part-time students in a science education subject in a Bachelor of Education conversion course for non-graduate teachers. The sample consisted of a stratified sample of 15 state schools selected from a pool of 40 local schools. At the end of the project, science co-ordinators from surveyed schools were asked to comment about the reliability of the findings.

RESULTS

There were 32 male and 68 female respondents. The average number of years that they had been teaching was 17.6 (standard deviation 6.4). Forty nine had been teaching over 17 years and these figures are a typical age-profile of primary teachers in Australian (DEET, 1993). Forty seven percent of respondents were not graduates, and most of these had not updated their initial tertiary training. Interviews with teachers enrolled in the BEd conversion course revealed that recent changes in the criteria for teacher promotion led to their renewed interest in tertiary studies, because additional qualifications were perceived as a vehicle for promotion and increased salary.

Teaching science

No significant gender difference in the time allocated to science teaching was found. Teachers indicated that they spent an average of 45 to 60 minutes per week teaching science, i.e. less than 12 minutes per day; less than half of the time recommended for such a key learning area. Twenty percent of respondents were spending more than 12 minutes per day teaching science, and 13% were spending less than 5 minutes per day. A typical comment by a school science co-ordinator was "science like art, craft and music requires additional preparation time. Therefore teachers will avoid these subjects when pressed for time."

Teachers concentrated on science-based units and taught less of the designing and making, and technology sections of the syllabus. More females than males were collaborating to develop programs (teaching units), but overall, the amount of collaboration was low.

Support and assistance

Thirty percent of respondents felt that they were able to receive adequate advice and assistance. This indicates that there was an immediate need for teacher in-service. Ninety five percent of respondents considered that self-contained experimental kits would assist their teaching, and only five percent considered that booklets of stencil masters would be useful. Responses from interviews indicated that teachers wanted to employ a "hands on" approach to science but needed help with ideas and resources. Fifty one percent had received no in-service training at the time of the survey. The most popular suggestion was a one day in-service conducted during school time at a "host school" by consultants or local teachers. Most respondents (83%) also felt that these in-service courses should occur four times per year or once every term.
CONCLUSION

Although all teachers were spending some time on science teaching, most were teaching less than 12 minutes per day. Nearly 75% of teachers were implementing science units similar to those used in the past. This strategy gave them time to learn about other aspects of the syllabus and for sample units to be developed. All teachers interviewed indicated that they had little time to devote to their own in-service and needed help. This issue was raised by Cumming (1993, p.8) in his discussion about the need for "high quality professional development" for teachers who will implement a national curriculum. There is an immediate need for self-contained kits of materials. Ideally such kits should be in small portable containers and use items that are cheap, readily available and easy to use. Such kits are being developed by the National Science Centre in Canberra and are called "Exciter Packs." Teachers interviewed stated that finding and organising the materials required for science lessons took time that they could not spare.

Some important issues arising from this study that need to be considered by planners of primary science education are:

* teachers should, but do not always want to, allocate more time to the teaching of science.
* there is a need for regular in-service that is held in schools.
* support kits of "hands on" materials are needed by nearly all teachers.
* universities and secondary schools can provide of human and physical resources that could support the implementation of the syllabus.
* while the use of teachers to train their peers may be well received, there is a danger that they will be taken away from classes and their students will suffer. Also problems with over-commitment and "teacher burn-out" may also occur.
* making a section of a syllabus mandatory does not guarantee that it will be taught. Teachers avoid sections of the syllabus if they lack confidence.

REFERENCES

AUTHOR

BRIAN FERRY, Lecturer in Science Education, Faculty of Education, University of Wollongong, Specializations: science education, information technology and science education, environmental education.
THE ROLE OF GROUP WORK USING COMPUTATIONAL EXPLORATORY LEARNING ENVIRONMENTS WITHIN CHILDREN'S LEARNING IN SCIENCE

Zoe Zoni Kavogli
University of Glasgow

RESEARCH NOTE

The study focuses on the development of pupils' cognitive strategies while using computational exploratory environments (the various problem-solving activities which pupils have undertaken provide opportunities for the development of particular skills connected with problem-solving, investigation and reasoning skills) and on the effects of group work (based on how the group functioned, the motivation and involvement of pupils, how these environments influenced pupils working together and vice-versa). The results of the study were drawn from appropriate observations, interviews and questionnaires from 90 pupils aged 10-13, from junior and secondary schools during the application phase of their learning process in Science topics and are mentioned below.

The creation of a HyperCard stack can be a creative and communicative form of learning, lending itself not only to the development of computer and science skills but also to the extension of the child's language. However, for the purpose of this study, it is the problem-solving aspect which takes precedence. The various activities which pupils undertook by creating HyperCard stacks provided opportunities for the development of particular skills connected with:

* Problem-solving (deciding upon or identifying a problem; planning strategies, carrying them out, and recognizing whether they are successful and where they are not; checking solutions, relating them to the original problems, and deciding how reasonable they are; revising and recrafting; self-evaluating).

* Reasoning (reasoning logically; drawing inferences; being systematic and consistent; describing and explaining methods, reasons, strategies, predictions, results or conclusions).

* Investigation skills (asking questions and deciding which of them to pursue; making hypotheses; setting up fair tests; monitoring: continuous attempt to match efforts, answers and discoveries to initial questions or purposes; classifying: identifying properties, similarities and differences; counting possibilities; recognizing patterns and relationships).

The important skill of decision making is not listed separately since it is implied in many of those which have been described.

Groups of students began by talking among themselves and exchanging ideas on how to present the topics to other users. Then they decided on the plans, the distribution of work among them and the timetable. Thus, the creation of a HyperCard stack contributed to the pupils' personal and linguistic development, as well as providing a stimulus for the growth of problem-solving skills. A problem-solving situation is set up by offering a task which requires interpretation through the creation of a stack.
Fig. 1 shows some of the findings of the study. In this figure, 'Self' means that pupils created the HyperCard feature by themselves; 'Help' means that they created that feature with some help from other classmates or their teacher; 'No' means that they did nothing with that feature. The figure shows that the majority of the pupils created buttons, graphics and scanned pictures by themselves. Many pupils also created sounds and visual effects by themselves. Some of them created links and fields by themselves.

The majority of pupils enjoyed working with HyperCard in groups although the work was hard because of its technical competence. Concerning the distribution of work, all pupils worked taking turns most of the time. Mutual help among them was observed. Additionally, teachers' strategies were pupils' monitoring, pupils' encouragement, being a facilitator/guide for learning and for group work.

AUTHOR

DR. ZOE ZONI KAVOGLI, Research Associate, Robert Clark Centre for Technological Education, Department of E. & E. Engineering, University of Glasgow, 66 Oakfield Ave. Glasgow G12 8LS, U.K. Specializations: science education, educational computing, science teacher education.
LEARNING IN SCIENCE CENTRES AND SCIENCE MUSEUMS: A REVIEW OF RECENT STUDIES

Terry McClafferty & Léonie Rennie
Curtin University of Technology

RESEARCH NOTE

School visits to science education centres and science museums (SECSM) often result in children armed with worksheets rallying from exhibit to exhibit in a search for knowledge. Is it assumed that learning occurs. Does it? Investigations into cognitive, affective and psychomotor learning in these settings have resulted in a variety of conclusions. A review of recent studies in the science education centre and science museum settings that investigates student or visitor change in science content knowledge or attitudes towards science has been compiled from a wide range of literature. The rapid growth of SECSM and their impact in promotion of science to the public has resulted in more science education researchers devoting research to this important setting outside of the classroom or school science laboratory. Many teachers utilise the resources of SECSM in their teaching with class visits to SECSM. These field trips are enjoyed by many children who attempt to engage with as many exhibits and activities as possible, with some children rallying from exhibit to exhibit. Education researchers have used a variety of instruments and methods to investigate students' or visitors' change in science content knowledge or attitudes towards science. From a comprehensive review of literature research, a number of studies (n=39) have been identified which are concerned with cognitive, affective and psychomotor learning. The studies have been classified into groups according to the method of research technique and the specific purpose of the research. These categories are: (a) cognition studies, (b) group interactions, also referred to as child-adult interactions; (c) impact of SECSM on school groups, (d) impact of SECSM on docents, (e) impact of SECSM on visitors, and (f) evaluation studies. Each paper has its results summarised and the research procedure is described and discussed.

The purpose of the review was to gain insight into the techniques of the researchers who investigate children's learning in the informal education setting of SECSM. Many of the studies reported are published in journals, monographs and limited circulation periodicals not associated with education or science education. These obscure publications include museum journals, visitor studies journals, monographs and restricted publications of science museums, science education centres, science and technology centre associations, museum associations and visitor study associations. In addition, a small group of research studies are undertaken as private reports to fulfil the requirements of government audit guidelines for museum performance and are not published. This review and classification would be of use for science education research in SECSM of Australia. Some of the articles are available from Australian SECSM library collections. A wide range of methods are reported and the findings of the studies show a range of differing outcomes for children and adults who visit SECSM.

AUTHORS

TERRY McClAFFERTY, Doctoral Student, Science and Mathematics Education Centre, Curtin University of Technology, GPO Box U1987, Perth, W.A. 6001. Specialisations: cognitive, affective and psychomotor learning in science museums and science education centres and exhibit evaluation.

DR LÉONIE RENNIE, Associate Professor, Science and Mathematics Education Centre, Curtin University of Technology. Specialisations: cognitive and affective aspects of science and technology education, and gender issues.
STUDENTS’ AND TEACHERS’ EXPLANATIONS OF CHEMICAL EQUILIBRIUM

Janice M. Wilson
Griffith University

RESEARCH NOTE

This research note reports on a preliminary exploration of the verbal explanatory frameworks provided by teachers as the bases for instructional units on the topic of chemical equilibrium. This pilot analysis seeks to describe and explore qualitatively (i) the language and types of explanations used by teachers during sequences of lessons and (ii) the types of responses given by students to structured hypothetical questions in one-to-one interviews. The words and phrases inherent in the explanations used by teachers and students in the initial analysis are currently being used as the basis for a computer-aided content analysis of a larger sample of 54 verbatim lesson transcripts.

Method

Six Senior Chemistry teachers and their students from four independent schools in Brisbane were voluntary participants in this study. Complete three-week sequences of lessons on the topic of chemical equilibrium were audiotaped and verbatim transcripts prepared. Seventeen students of varying achievement levels from three of the schools were nominated by their teachers and agreed to be interviewed about their understanding of chemical equilibrium. Thus, two data sources have been examined to date: 27 verbatim lesson transcripts obtained from three classrooms during the teaching of a unit and 17 transcripts of individual structured interviews with students.

Types of explanations

Ten types of teacher explanations were identified by Dagher and Cossman (1992) and these have been used to categorise explanatory episodes in the lesson transcripts. The following quotes drawn from the text of the transcripts illustrate the four most frequently used explanation types.

Let us see what we can deduce from our observations? Let us look at the equation for the formation of the complex (FeI(SCN))^{2+}. Look at the first step of this experiment — we can identify the colours of this species......... (Rational)

You can explain Le Chatelier’s Principle if you use the collision theory, that if you have more of those to collide with these, therefore the collisions between hydrogen ions and acetate ions will occur more readily, more frequently. (Mechanical)

So the Fe^{3+}, because it has gone up, will try to reduce it and the only way it can is by combining the thiocyanate ion and moving it in the direction of this red complex. (Anthropomorphic).

If you dropped the temperature, that is like taking heat away from this, the reaction will shift in the direction in order to regain equilibrium. (Teleological).
Variation between three teachers

Examination of the language used by three teachers (identified by pseudonym) revealed marked individual differences in the frequencies with which they gave rational, mechanical, anthropomorphic and teleological explanations. As well, the frequencies of particular types of explanations varied with the focal activity in the lessons.

In the transcripts examined, Kevin gave mostly mechanical explanations and referred to theory in the textbook as the basis for those explanations. Discussion of demonstrations was oriented to confirmation of theory rather than deduction from observation. Embedded within nearly all his references to shifts in equilibrium position and to Le Chatelier’s Principle was anthropomorphic language, e.g. the system "tries to get back to equilibrium."

William emphasised the development of rational and mechanical explanations at the molecular level. Students were encouraged to make deductions from observations and to derive theory from experiment. He cautioned students against using anthropomorphism and frequently asked students to rephrase anthropomorphic statements or questions with implicitly mechanical language that referred to collision theory.

In Kerry’s classroom the distribution of different types of explanations was apparently influenced by the context of the lesson, with considerable emphasis placed on the derivation of theory from observation. Much of the theory of the unit was developed through teacher/student discussion of observations made during demonstrations and laboratory exercises. Rational and mechanical explanations were predominant throughout the sixteen lessons. Anthropomorphic and teleological explanations were given infrequently and those occurred in lessons in which previously completed exercises and problems were being discussed.

Students’ explanations

Transcripts of structured interviews with seventeen students from four classes also revealed variation in type. An interview protocol was designed in which initial questions established that an equilibrium reaction \((2X + Y \rightleftharpoons 2XY)\) was taking place in a closed vessel. Students were asked to predict changes in the direction of the reaction with addition of reactants or product and then to explain the basis for their prediction. If the student’s response to the question was unclear the interviewer prompted the student with a series of remarks which escalated in degree of directiveness, e.g. "Could you explain that?" or "Could you give me more details?" through to "Could you explain what is happening at the molecular level?" and finally "What would happen to the probability of collisions between particles?"

There was a noticeable tendency for students to change the type of explanation with interviewer prompts from initial anthropomorphism to a mechanical response. After prompting, many students gave mechanical explanations, but initially tended to use anthropomorphism or teleology as a convenient "chemical colloquialism," e.g.

Student: Umm, they’re doing it, in order to reach equilibrium because it’s out of proportion if more of something is added. (Teleological).
Interviewer: When more of something is added, what does it do to the relationships between the atoms and molecules?
Student: How do you mean?
Interviewer: Well, if you add more X, does it change anything?
Student: Um, yes. There’s a higher probability of collisions between X and Y and therefore the forward reaction happening. (Mechanical).
Summary and Implications

The initial analysis of the lesson transcripts of three teachers has revealed that the balance of types of explanations differed between individual teachers. Within the classrooms of individual teachers, explanations also varied with the task that was the focus of the lesson. In the structured interviews, types of students' explanations varied with prompts by the interviewer. The distribution of types of explanation differs from that reported by Dagher and Cossman (1992).

Given the claim (Gabel, Sherwood & Enochs, 1984; Gabel, Samuel & Hunn, 1987) that ability to conceptualise at the molecular level is a key element in problem solving in chemistry, it will be important to investigate fully the influence of the language of explanation on the construction by students of their own personal models. For students who have acquired an explanatory framework consistent with the scientific view, and who are able to explain phenomena and events at the molecular level in terms of collision theory, the use of convenient phrases with implicit anthropomorphism such as "it will want to go the other way," may be a convenient shorthand. Whether the use of such language (with and by students holding partial or naïve models) constrains the construction of more functional models is open to future investigation.

REFERENCES

AUTHOR

Dr Jan Wilson, Lecturer, Faculty of Education, Griffith University, Nathan, Queensland, 4111. Specializations: cognitive processes in science learning and teaching.
GIRLS, BOYS AND CONCEPTUAL PHYSICS: HOW SENIOR SECONDARY STUDENTS HAVE RESPONDED TO A CONCEPTUAL PHYSICS COURSE

J.A. Woolnough
Dickson College

ABSTRACT

This paper presents an evaluation of the Physics course at Dickson College (ACT). It highlights students’ expectations before the course, and their impressions and feelings during the course. This is the second evaluation carried out as part of a long term study of student attitudes before and after the introduction of a more ‘conceptual’ approach to the teaching of physics at this college. Overall, this approach has produced a more positive attitude in all students, but more significantly in girls.

AUTHOR

DR. JIM WOOLNOUGH, teacher, Dickson College, Phillip Avenue, Dickson, ACT, 2602.
Specializations: senior physics, chemistry and biology.
Selected refereed papers from the Twenty-fifth Annual Conference of the Australasian Science Education Research Association, organised by the University of Tasmania, Hobart, 10-13 July, 1994.

EDITOR
Paul L. Gardner

DEPUTY EDITOR
John Loughran

BUSINESS MANAGER
Richard T. White

After 1 January 1995, all correspondence about this publication, including subscriptions and orders for back issues, should be sent to the incoming Editor, Dr. Cam McRobbie, Centre for Mathematics and Science Education, Queensland University of Technology, Locked Bag 2, Red Hill, Queensland 4059.
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial comments</td>
<td>(vi)</td>
</tr>
<tr>
<td>Review Panel</td>
<td>(viii)</td>
</tr>
<tr>
<td>Guidelines for authors</td>
<td>(x)</td>
</tr>
<tr>
<td>ANDERSON, T.R. & GRAYSON, D.J. Improving students’ understanding of carbohydrate metabolism in first-year Biochemistry at tertiary level.</td>
<td>1</td>
</tr>
<tr>
<td>APPLETON, K. & BEASLEY, W. Students’ learning in science lessons: towards understanding the learning process.</td>
<td>11</td>
</tr>
<tr>
<td>AUBUSSON, P. Intention and practice in school science education.</td>
<td>21</td>
</tr>
<tr>
<td>BAKER, R. Teaching science in primary schools: what knowledge do teachers need?</td>
<td>31</td>
</tr>
<tr>
<td>CHIN, C., GOH, N.-K., CHIA, L.S., LEE, K.-W. L. & SOH, K.-C. Pre-service teachers’ use of problem-solving in primary science.</td>
<td>41</td>
</tr>
<tr>
<td>CHRISTENSEN, C. & McROBBIE, C. Group interactions in science practical work.</td>
<td>51</td>
</tr>
<tr>
<td>CORRIGAN, D. & LOUGHRAN, J. Teaching portfolios: developing quality learning in pre-service science teachers.</td>
<td>60</td>
</tr>
<tr>
<td>FARMER, B. From science teacher to technology facilitator: a case study of Katherine.</td>
<td>68</td>
</tr>
<tr>
<td>FENSHAM, P.J. Progression in school science curriculum: a rational prospect or a chimera?</td>
<td>76</td>
</tr>
<tr>
<td>FLEER, M. & HARDY, T. The development of a K-3 science profile in the context of the National Science Statement and Profile.</td>
<td>83</td>
</tr>
<tr>
<td>GAULD, C. Newton’s Third Law after Newton.</td>
<td>93</td>
</tr>
<tr>
<td>GRAYSON, D. Concept substitution: an instructional strategy for promoting conceptual change.</td>
<td>102</td>
</tr>
<tr>
<td>GREIVE, C. & DE BERG, K. An examination of the predictions and explanations of pre-service nurses across a range of contexts involving the same principles of fluid physics: a preliminary study.</td>
<td>112</td>
</tr>
<tr>
<td>GRIFFIN, J. Learning to learn in informal science settings.</td>
<td>121</td>
</tr>
<tr>
<td>GUNSTONE, R.F. Technology education and science education: engineering as a case study of relationships.</td>
<td>129</td>
</tr>
<tr>
<td>GUTH, J. & PEEG, J. First-year tertiary students’ understanding of iron filing patterns around a magnet.</td>
<td>137</td>
</tr>
<tr>
<td>HACKLING, M. Application of genetics knowledge to the solution of pedigree problems.</td>
<td>147</td>
</tr>
</tbody>
</table>
HANRAHAN, M. Student beliefs and learning environments: developing a survey of factors related to conceptual change.

JARVIS, T. & CAVENDISH, S. Subject competency of teachers and level of dependence on resource packs to teach levers, gears and pulleys.

JOHNSTON, D.J. & RENNIE, L.J. Explainers’ perceptions of visitors’ learning at an Interactive Science and Technology Centre.

JONES, A. Technological problem solving in two science classrooms.

KERRISON, A.R. & JONES, B.L. Responses to an interactive science exhibit in a school setting.

LOWE, R. Diagram prediction and higher order structures in mental representation.

LUCAS, K.B. Perceptions of assessment in a senior physics class.

MATHER, V. Gender inclusive curricula: a focus on two responses.

MULHOLLAND, J. & WALLACE, J. Knowing and learning about science in a preservice setting: a narrative study.

PAIGE, K. Factors perceived to have enabled 25 women to develop expertise to teach primary science.

PALMER, D. The effect of the direction of motion on students’ conceptions of forces.

RENNIE, L. Measuring affective outcomes from a visit to a Science Education Centre.

RIGANO, D.L. & RITCHIE, S.M. Students’ thinking in a chemistry laboratory.

RODRIGUES, S. Data handling in the primary science classroom: children’s perception of the purpose of graphs.

SCHIBECL, R.A. & WONG, K.Y. ‘Have you got any cholesterol?’: Adults’ views of human nutrition.

SCHULZ, W. & McROBBIE, C. A constructivist approach to secondary school science experiments.

SEGAL, G. & COSGROVE, M. “I want to find out how the sun works!” Children’s sociodramatic play and its potential role in the early learning of physical science.

STRUBE, P. Narrative in the science curriculum.

(iv)
TAO, P.K. Comprehension of non-technical words in science: the case of students using a 'foreign' language as the medium of instruction.

TULIP, D., O'CONNELL, D. & ENGLISH, L. Children's interests in geology and biology.

TYTLER, R. Consistency of children's use of science conceptions: problems with the notion of 'conceptual change'.

WATTERS, J.J. & GINNS, I. Self-efficacy and science anxiety among pre-service primary teachers: origins and remedies.

ZEEGERS, Y. Teacher professional development: which aspects of in-service do teachers believe influence their classroom practice?

ABSTRACTS AND RESEARCH NOTES

CREEDY, L. The Strategic Teaching Framework: the use of multimedia in teacher education.

FARNSWORTH, I. & JEANS, B. Determinants of the competence and confidence of teacher education students studying primary science education.

FETHERSTON, T. Personal construct psychology as a constructivist approach to learning.

FRANCIS, R. Implementation of Science and Technology K-6 in Riverina schools.

HARVEY, A. Assessment in the science classroom.

ROSS, P. The relevance of the term 'misconception'.

SKINNER, R., FOULDS, W. & COUSINS, J. The effect of intervention strategies on creative thinking skills of pre-service teachers.

TREGUSTR, D., STOCKLMAYER, S.M., HARRISON, A., VENVILLE, G. & THIELE, R. Observations from the classroom: when analogies go wrong!

ZEEGERS, P. First year university science — revisited.

SUPPLEMENT

The Book of Genesis and the Chronicles of the People of ASERA. (After-dinner speech at the 1994 ASERA Conference)
EDITORIAL COMMENTS

This is a year of celebration for all of us who are involved in science education research in Australia and New Zealand. We have already held our 25th ASERA conference; next year, in May 1995, we could celebrate the 25th anniversary of the foundation of ASERA (except that we now meet in July); and the next issue of Research in Science Education will be Volume 25. Readers may be a little puzzled at first over why all of these twenty-fives don't happen simultaneously. The reasons are partly semantic and partly historical. In everyday usage, a 25th anniversary occurs 25 years after the event, so that a couple married in 1970 will celebrate their 25th anniversary in 1995. Conferences, however, begin to be enumerated right from the start, so that ASERA's 25th conference occurred 24 years after it was founded.

As for the numbering of RISE, that is due to the fact that the first conference did not result in any publications: it was primarily a meeting of like-minded people who came to Monash, as a result of an invitation issued by Peter Fensham, to explore the possibility of creating a national science education research organisation. The first publication, called Research 1971, appeared after the second conference, held in Sydney; Dick Tisher was the founding editor. Two years later, the name changed to Science Education Research 1973. However, someone undoubtedly recognised the problem of a journal title that alters its name each year, and so in 1974, with Volume 4, the present title was adopted.

The 25th conference, the second to be held in Hobart, was a marvellous affair. Brian Jones and Max Walsh, with the backing of a professional conference company, did a superb job. (It may be a sign of my advancing age, but I found the comforts of a hotel to be a pleasant contrast to the rather Spartan living conditions in one of the University of Tasmania's student colleges that we encountered at our previous conference in 1981.) ASERA participation keeps rising: this time almost 150 people came, not just from Australia and New Zealand, but from Singapore, Hong Kong, the Philippines, Fiji, South Africa and England as well. Three of the participants had also been present at the founding of ASERA: Peter Fensham (now retired from his chair at Monash but as active as ever); Dick White (described in Research 1971 as ASERA's "administrative assistant" and now Dean of Education at Monash) and myself. Ninety papers — a record number — were presented, and 72 of these, another record, were submitted for publication. (Unfortunately, the RISE budget does not stretch to cover the cost of publishing a 700-page journal, and we have had to be selective.)

This issue of RISE is the sixth that I have edited, and it will be my last. It is perhaps an appropriate time to reflect on the many changes that have taken place in the journal since Research 1971 first appeared 23 years ago. I have all of the issues on my shelf. The most immediately obvious change is in the external appearance: from a paper-covered, stapled booklet, through the red-covered editions, to our present format. The size has grown through the years: from eleven papers in 1971 to more than forty in recent years, from 146 pages to around 400. The technology of production has changed: manuscripts and electric typewriters have given way to word-processing, floppy disk versions, and laser printers. And in what is perhaps a portent of the future, the final version of Marilyn Fleer and Tim Hardy's paper was sent to me by email. The process of unscrambling the BinHex code, reading it into a Word for Windows file, and converting it to WordPerfect was completed within five minutes of its transmission from Canberra.
But these are mere technical details. The most significant changes are associated with the contributors and their contributions: who they are, and what they are writing about. The first ASERA contributors were frequently former secondary school teachers who had found new positions in the rapidly expanding university sector of the 1960s. The make-up of ASERA in the 1990s is very different. Federal funding of the tertiary sector in the 1970s, and the Dawkins amalgamation initiatives in the late 1980s, have resulted in a much wider range of people becoming involved in educational research activities. RISE papers now encompass science education research conducted in kindergartens, in primary schools, in secondary schools, in university undergraduate science courses, in initial and in-service teacher education, and in the wider, public world of hospitals, farms and museums. The journal is much the richer for it.

Editorial procedures have changed, too, as we have evolved into a proper journal. Dick Tisher's first effort in 1971 was essentially a one-man-show. The 1977 conference in Wagga Wagga saw the establishment of a small editorial board; for more than a decade, editorial boards acted informally, to provide advice to the editor about whether or not to accept a paper. The Perth conference in 1990 carried a policy decision: all papers were to be reviewed, independently, by two referees. In a development that reflects ASERA's strong commitment to democracy and co-operative endeavour, the Review Panel — now numbering ninety — contains a sizeable proportion of the ASERA membership. If a few of the names on the list (pp. viii - ix) appear unfamiliar, that is because I occasionally go outside ASERA to obtain the judgments of academics with particular expertise in subject-matter fields or research methods not always available within the organisation. This is an appropriate place to record my thanks to all of them for their competent, constructive and prompt reviews. At the same time, I want to acknowledge the considerable help during the past five years of the various deputy editors and of the office staff at Monash.

The next volume of RISE will reflect another major change in the evolution of this journal. In Perth in 1990, we first raised the possibility of publishing RISE as a conventional journal, with several issues per year, and not restricted to contributions from conference participants. That idea was adopted in Lismore in 1993, and Cam McRobbie at Queensland University of Technology offered to return to the editorship of the new expanded journal. (I say 'return', because Cam served as editor once before, in 1978, during a period in the late 1970s in which the journal was edited by someone from the city where the conference was held.) To prepare for his second coming, Cam has been assembling contributions throughout the past year, and Volume 25 Number 1 should appear early in 1995. Right now, Cam may not know what he has let himself in for, but he is certainly going to find out rather soon. This is an appropriate time to wish Cam, ASERA and the new RISE enterprise every success. Please give it your support.

Monash University
December 1994

Paul Gardner
Editor
REVIEW PANEL

Editor: Paul Gardner, Monash University
Deputy Editor: John Loughran, Monash University

Ken Appleton, University of Central Queensland
Peter Aubusson, University of Western Sydney
Beverley Bell, University of Waikato
John Bigelow, Monash University
Paul Black, King’s College, London
John Bowden, Royal Melbourne Institute of Technology
Chris Brew, Monash University
Bob Bucat, University of Western Australia
Jim Butler, University of Queensland
Anne Byrne, Queensland University of Technology
Malcolm Carr, University of Waikato
Brian Chapman, Monash University
Peter Clarkson, Monash University
Kevin Collis, University of Tasmania
Alan Cook, Queensland University of Technology
Deborah Corrigan, Monash University
Mark Cosgrove, University of Technology, Sydney
Judith Cousins, Edith Cowan University
Graham Crawford, University of South Australia
Eddy de Jong, Monash University
John Edwards, James Cook University
Colin Evers, Monash University
Bev Farmer, Auckland College of Education
Peter Fensham, Monash University
Marilyn Fleer, University of Canberra
Helen Forgasz, Monash University
Michael Forret, University of Waikato
Rod Francis, Charles Sturt University
Barry Fraser, Curtin University of Technology
Patrick Garnett, Edith Cowan University
Colin Gauld, University of New South Wales
John Gilbert, University of Reading
Margaret Gill, Monash University
Richard Gillespie, Scienceworks Museum, Melbourne
Denis Goodrum, Edith Cowan University
Richard Gunstone, Monash University
Mark Hackling, Edith Cowan University
Mavis Haigh, Auckland College of Education
Tim Hardy, University of Canberra
Filocha Haslam, Monash University
Don Hutton, Monash University
Lawrence Ingverson, Monash University
Beverley Jane, Deakin University
Wendy Jobling, Monash University
Jane Johnston, Nottingham Trent University
Alister Jones, University of Waikato
Brian Jones, University of Tasmania
Dorothy Kearney, LaTrobe University
Rex Kerrison, University of Tasmania
Valda Kirkwood, The University of Melbourne
Gilah Leder, LaTrobe University
Richard Lowes, Curtin University of Technology
Brian McKittrick, Monash University
Carmel McNaught, LaTrobe University
Cam McRobbie, Queensland University of Technology
Cliff Malcolm, Curriculum Corporation
Ian Mitchell, Monash University
William Murphy, Monash University
Ian Napper, University of South Australia
Barry Newman, Sydney Grammar School
Jeffrey Northfield, Monash University
Helen Ormiston-Smith, LaTrobe University
David Palmer, University of Newcastle
Leonie Rennie, Curtin University of Technology
Steve Ritchie, James Cook University
Glenn Rowley, Monash University
Donna Satterthwaite, University of Queensland
Lyn Schaverien, University of Technology, Sydney
Renato Schibeci, Murdoch University
Peter Searle, LaTrobe University
Gilda Segal, University of Technology, Sydney
Roy Skinner, Edith Cowan University
Ilana Snyder, Monash University
Keith Stead, Monash University
Paul Strube, University of South Australia
David Symington, CSIRO
Anne Symons, Korowa Anglican Girls’ School
P.K. Tao, Monash University
David Tregust, Curtin University of Technology
Richard Trembath, Monash University
Georgina Tsolidis, Monash University
David Tulip, Queensland University of Technology
Russell Tytler, Deakin University
Marie-Paule Van Damme, Monash University
John Wallace, Curtin University of Technology
Richard White, Monash University
Lesley Wilkes, Australian Catholic University (NSW)
Rachel Wood, University of Waikato
Jim Woolsnough, Dickson College, Canberra
Petrus Zeegers, Flinders University
Yvonne Zeegers, University of South Australia

Assistance with author correspondence: Heather Phillips
Secretary to the Business Manager: Cath Henderson
Printing: Monash University Printing Services
GUIDELINES FOR AUTHORS FOR THE PREPARATION OF PAPERS AND DISKS FOR RESEARCH IN SCIENCE EDUCATION

SUBMISSION TO CONFERENCE ORGANISERS

Hard copies only are required for submission to the ASERA conference organisers. Setting out can be in the same format as required for publication, or in some other format if you prefer.

SUBMISSION TO EDITOR FOR PUBLICATION IN RISE

Papers submitted to the editor for publication in RISE should be on disk, with three hard copies. See Word Processing and Setting Out below. Papers should be submitted as early as possible within the four weeks following the conference.

Word Processing
Software We use WordPerfect 5.1, but other software is acceptable, as we have the facilities to convert other files.

N.B. It is the primary responsibility of authors to ensure that copy has been thoroughly proof read. Please ensure that typographical errors have been corrected, and that there is agreement between the references in the text and the final reference list.

Setting Out
Length Each paper is to have a maximum length of 10 pages in RISE format (approximately 42000 bytes). This length includes text, reference list and pages containing diagrams, figures and tables. This is a strict requirement and papers which exceed it will not be accepted for review. All pages are to be numbered consecutively. If you wish to see what your paper will look like in RISE format, set your format at 90 characters per line, single spacing, page number centred at top, followed by one blank line, and 50 lines of text. To make your own hard copy of this, you will need a small print font. We use Helvetica 9pt (AE)

Title Article title in capitals, author(s) in lower case, affiliated institution in lower case, all centred. Do not include departments, faculties, campus or addresses here, e.g.

A LEARNING MODEL FOR SCIENCE EDUCATION

Mary Smith & John A. Smith
University of Central Australia Alice Springs College

Abstract Include an abstract of between 100-200 words, headed ABSTRACT (centred), immediately following the title; the whole abstract should be indented.

Tables Use arabic numbers, with centred, capital headings above the table, e.g.

| TABLE 2 | CORRELATIONS BETWEEN ANXIETY AND RUNNING SPEED |

Simple tables should be incorporated directly into the word-processed text. Complex tables which cannot be treated in this way should be supplied separately as camera-ready copy (maximum size 22.5 x 13.5 cm) with appropriate space left in the body of the text.

(x)
Indented dot points: Use asterisks, not letters, numbers, or dots to mark indented dot points, e.g. The project involved
* a conceptualization phase...
* an implementation phase...

Figures: Figures should be supplied as camera-ready copy (maximum size 22.5 x 13.5cm). Try to ensure good quality copy: dot-matrix graphics printed in pale-grey ink often reproduce poorly! Leave appropriate space in the text. Figure descriptions should be below the figure and centred e.g.

Fig. 3 A model of the learning process

Headings: Main headings should appear in CAPITALS in the centre of the page. Sub-headings should be in lower case, underlined, and left-justified. They should be used at regular intervals to assist in the reader’s comprehension of the text. Section and sub-section headings should not be numbered.

Footnotes are not to be used.

References: References to journals and books should follow the APA guidelines. In the body of the paper references should appear, for example, as Bernstein (1971), or Fisher and Fraser (1983). References in parentheses are presented as (White & Tisher, 1986). These references should be placed in the reference list as follows:

Please note
* author’s name in lower case
* ampersand (&) symbol for joint authorship
* lower case for article or book titles
* upper case initials for journal titles, underlined
* volume number of journal underlined
* book titles underlined
* city of publication followed by colon, followed by publisher
* two-space indentation below each author
* no blank lines between references.

In line with current APA practice, reference notes should not be used. References may include conference papers. Other material (personal communications, unpublished manuscripts) should be described as such in the body of the text, without further referencing.

Author(s): At the end of the paper, include a brief note in the following form:

AUTHOR

DR MARY SMITH, Senior Lecturer, Faculty of Education, University of Central Australia, Alice Springs, NT 0870. Specializations: biotechnology curriculum development, biology teacher education.

(xii)
ABSTRACTS AND RESEARCH NOTES

THE STRATEGIC TEACHING FRAMEWORK: THE USE OF MULTIMEDIA IN TEACHER EDUCATION

Lynda J. Creedy
University of New England

RESEARCH NOTE

Multimedia in teacher education

A major concern of teacher educators is to provide student teachers with teaching experiences and to encourage them to teach thoughtfully and to reflect upon the consequences of their teaching practices. Ideally, students should experience different classroom practices, different teachers and classrooms. These ideals are difficult to reach in the face of limited budgets for school experience visits. Time constraints on the supervising classroom teacher can limit the amount of time spent in reflection with the student. It was with these concerns in mind and a consideration of the characteristics of teaching that members of the Centre for Research into Educational Applications of Multimedia (CREAM) began to develop a hypermedia learning system based on the Strategic Teaching Framework.

Titled Teaching in Context, the STF is a multimedia program integrating video coverage of an exemplary teacher covering an integrated Science and Technology unit, audio commentary, and a data base of relevant theoretical concepts which are exemplified on the video or discussed in the audio comments. The concept is based on the Strategic Teaching Framework (STF) which was developed by Indiana University together with the Central Regional Educational Laboratory in the U.S.A. (Fishman & Duffy, 1992)

The STF relies heavily on video footage of the classroom under study. The video shows an integrated program at work in a ‘family group’ class. The model of this STF is that of a student being apprenticed to a teacher. The mentor teacher models the teaching behaviours for the student user of the system AND reflects on their own behaviour. The mentor teacher provides a model not for the purpose of being imitated, but to provide a basis for the student to analyse the instructional strategies. Included in the STF is a ‘forum’ feature. Users can contribute to the STF by typing in their thoughts as they work through the hypercard stack. Students can read what others have written, return and examine their own thoughts when having first viewed the STF. At any time during the viewing of the Quicktime movie of the classroom, the student may listen to the mentor teacher speak about what is going on, listen a selection of experts as they give their points of view when observing the class, search the database for information relevant to the particular segment being viewed or read or insert forum comments.

Students can watch the classroom in operation as a whole; and/or focus on the various themes which can be followed through the video clips and data base. Themes such as teaching strategies, classroom management, cooperative learning, activities, etc. Progress through the STF becomes the student’s personal journey; the learner has direct control of the display of video, audio, data base, etc., increasing student ownership for the process of learning and supporting the learner’s focus (goals). Because of this, it is essential in creating a resource as information-rich as the STF that students can ‘navigate’ easily and find the information they need quickly. This was a prime consideration in the organisation and layout of the STF.
Organisation

The unit covered in the STF is broken down into segments corresponding to lessons or parts of lessons during the unit. These lessons are accessed through a system of hierarchical menus. The student can proceed through these segments sequentially or focus on selected segments. The student may also view the unit by following selected themes through the STF. At all times from any card in the stack, the student may access the lesson overview, student forum, data base, teacher’s comments and expert teachers and researchers comments, or return to the lesson or theme menus.

Conclusion

Teaching needs to be studied in context, as a whole. This approach would require the student to spend much time in classrooms and in reflection. The STF is a learning environment which while not replacing actual teaching experience, can support that experience and allow students to maximise the benefit of the time they do have in the classroom. Students can learn about instructional strategies in a classroom context, tapping into an experienced teacher’s knowledge and experience. The motivation for creating the STF was not to ‘teach’ the students the ‘correct’ strategies to use in the classroom, but to support them in constructing and testing their own understanding of the instructional strategies in a classroom context.

The next phase of the project will be trials of the STF with pre-service primary teaching students. A copy of the prototype will be installed at Newling Primary School so that the teachers there can become familiar with the project and offer comment. After this exposure to the concept, a survey will be conducted to determine the structure and content of an STF which would support in-service training.

REFERENCE

AUTHOR

DR. LYNDA J. CREEDY, Lecturer, Faculty of Education, Nursing and Professional Studies, University of New England, Armidale, NSW 2351. Specializations: science education, senior secondary students’ understanding of biological concepts, applications of multimedia.
Research in Science Education, 1994, 24, 368-369

DETERMINANTS OF THE COMPETENCE AND CONFIDENCE OF TEACHER EDUCATION STUDENTS STUDYING PRIMARY SCIENCE EDUCATION

Ian Farnsworth & Bruce Jeans
Deakin University

RESEARCH NOTE

This study investigated the views of primary teacher education about their secondary science experiences and science and science education generally. The students were all beginning certain science education units. It was considered that the perceptions students have at this stage could contribute to their success (or lack of success) in the science education units and in their implementation of school science in later years. The sample consisted of 148 students of whom 108 were female. Most students had taken some science through secondary school and a few had taken some post-secondary science. The questionnaire used contained items covering secondary experiences, interest in science, views about scientists or science, and views about primary science education. The students were also asked about their expectations of the unit which they were about to take.

RESULTS

Secondary science experiences

Most students reported either no change, or an increase in, interest in science during secondary studies. They were most interested in biology and environmental science and least interested in physics and chemistry. Most could remember some topics in a positive way and these topics were often from biology (particularly genetics), environmental science and astronomy. About one-third of the students remembered at least one science teacher considered to be 'excellent' and most considered their teachers to be adequate. About one-half of the sample had taken Biology in year 12 and one-quarter had taken Chemistry. Other subjects were taken in smaller proportions (probably because of low interest and variations in school offerings).

Views about science and scientists

The wider interest in science reported appeared to quite high (mean 6.8 on a scale from 0 to 10) and students indicated strong agreement with the proposition that science is important for world progress. There was more diversity of views about the value of science in controlling word population and about the complexity of science language. Some stereotypical views of scientists were evident (maleness, eccentricity, traditional equipment and clothing) but many students (at least 40) saw scientists as normal people (few knew a scientist personally). Some students noted that the questions about scientists encouraged stereotypical responses. This suggests a heightened awareness of the dangers of stereotyping.

Views about primary science

There was a strong view that science ought to be taught in primary schools (147 of the respondents believed this) and that science is important (mean value 8.6 on a scale from 0 to 10). Females supported this view even more strongly than males (difference significant at the 0.004 probability level).
The students were able to suggest several topics that they considered children would like to learn. About 64% chose at least one topic that could be considered to be environmental in content and 40% mentioned at least one biological topic. Other topics mentioned covered a wide range but physical science content was relatively uncommon (mentioned by 20%). When asked about the likely enjoyment of children in learning about chemistry, physics biology, earth science, environmental science and technology it was notable that the mean estimates given by respondents were quite uniform and high (6.5 - 7.6 on a scale from 0 to 10). These estimates did not correspond with the students’ reports of their own interests. There was also a belief that ‘mixed’ activities would be very enjoyable as would learning about things noticed in children’s lives outside school. Females were more positive than males in predicting enjoyment in all of these topics and some differences were statistically significant at the 0.05 level.

The respondents generally did not accept that males learn science better than females or that experiments or activities are too messy or that doing science is dangerous. While it was evident that most of them did not want to become specialist science teachers, it was clear that almost all were favourably disposed towards science teaching and this view was stronger than the authors might have expected.

Expectations of the unit about to be taken

The students from whom these views were sought were undertaking a variety of science or science education units and there was a range of expectations consistent with this. However the largest group of expectations were concerned with ‘How to teach primary science’ (28%) and others were related to environmental topics (24%), biological topics (25%), physical or earth science topics (13%). A number of students (13%) expected to improve their basic science knowledge and some also mentioned interest rejuvenation.

Conclusion

This study suggests that most students entering science or science education units in pre-service primary teacher education courses have a positive attitude to the teaching/learning of primary science and see value in all domains of science for children at this stage. This was an unexpected finding. It was of concern however, that their interest in physical science topics was so low. This may be due to previous specific experiences in secondary science. Science and science education units should build on the positive attitudes of students and could develop physical science ideas through their significance in environmental and social problems.

AUTHORS

IAN FARNSWORTH, Lecturer in science education, Faculty of Education, Deakin University, Warrnambool, Vic. 3280. Specializations: science education, teacher education in science.

BRUCE JEANS, Professor, Faculty of Education, Deakin University, Warrnambool, Vic. 3280. Specializations: science education policy and practice, teacher education, school effectiveness.
PERSONAL CONSTRUCT PSYCHOLOGY AS A CONSTRUCTIVIST APPROACH TO LEARNING

Tony Fetherston
Edith Cowan University

ABSTRACT

This paper proposes that Kelly's Personal Construct Psychology deserves examination as a constructivist basis for science teaching and learning. It argues that because of the explicit nature of the psychology, the clear definition of learning and meaning and the integration of affective, psychomotor and cognitive dimensions of learning, the psychology has much to offer science education.

AUTHOR

DR TONY FETHERSTON, Research Consultant, Edith Cowan University, Bradford Street, Mount Lawley, Perth, 6010.
Research in Science Education, 1994, 24, 371-372

DETERMINING YOUNG ABORIGINAL CHILDREN’S SCIENTIFIC UNDERSTANDINGS:
A PILOT STUDY

Marilyn Fleer, Jane Sukroo & Tracey Faucett
University of Canberra

RESEARCH NOTE

Research into Aboriginal science, has questioned the Western orientation presently accepted
as the norm in science research (Watson & Chambers, 1989) and curriculum development
(Christie, 1991; Ritchie & Kane, 1990) and begins to explore how scientific knowledge is
constructed in Aboriginal communities. However, most of the literature available is
predominantly anecdotal (ERIC search, 1985-1993).

With the release of the National Curriculum Statements and Profiles more needs to be
understood about the cross-cultural nature of young Aboriginal children’s scientific
understandings. Consequently, it was decided to develop a pilot study which would
systematically examine the overall design, and closely scrutinise the instruments developed for
their ability to research young Aboriginal children’s understandings in science.

DEVELOPING THE RESEARCH INSTRUMENTS

The study focused upon 10 four and five year olds in a preschool context and 15 six to eight
year olds in a school context. It was decided to concentrate only upon rural Aboriginal
children. The specific areas investigated included:
• the sun and its place in the solar system - under the strand of Earth and Space,
• materials: their properties and uses - under the strand of Natural and Processed
 Materials;
• light - under the strand of Energy and Change; and
• intuitive taxonomies of their living environment - under the strand of Life and Living.

Cross-cultural factors were considered in the development and use of research instruments.

Day and Night: Earth and Space
Since the sample of young Aboriginal children was drawn from country preschools and
schools, an artificial environment had to be created. It was decided to set up an area within
the school or preschool that could be darkened, so as to simulate night. Black plastic with
luminous stars in the configuration of the night sky was hung above the heads of the
interviewer and interviewee in the darkened room. As part of this context, a campfire scene
was simulated. Within this context a story about night and day, involving a family going
camping in the bush was read to the children. This was followed by the opportunity for
children answer a series of questions which would reveal their understandings of night and
day and share the stories they knew about night and day.

Materials-Their Properties and Uses: Natural and Processed Materials
The camping theme was continued in the second set of interviews on natural and processed
materials. An additional story book was made as the main instrument for eliciting Aboriginal
children’s understandings of natural and processed materials. This story focused on the
materials that were needed in order to go camping, the setting up of the camp site, followed
by a storm which destroyed all the materials and equipment. This story set the scene to talk
to children about which natural materials available in the bush could be used for setting up
their camp.
Light: Energy and Change

The third set of interviews also made use of the camp scene. The darkened environment was utilised for finding out children's understandings of light. In this interview, each child was invited into the camp scene and on settling, the lights were turned off. The child was asked "What has happened?" "What can you see?". The child was then asked a series of questions in order to determine their understandings.

Intuitive Taxonomies: Life and Living

The instrument used to elicit children's understandings in this area was essentially a meter square laminated sheet where major topographical features of the area familiar to the children were drawn upon. Plastic animals and wooden blocks were provided in addition to a range of three centimetre square laminated pictures of a variety of animals, plants, and processed materials such as a tin can. Children freely drew and placed items all over the base sheet. On completion, children were asked to talk about what they had done and why they had chosen to place certain items together. Children were also asked to put the items on the base sheet into groups in a further attempt to find out how they were classifying things.

CONCLUSION

The pilot study provided a range of useful data for analysis. In all areas except the children's recall of traditional stories, richly contextualized data was collected. It was felt that the children's young age and not the questions themselves about traditional stories was the limiting factor. The age factor variable is yet to be examined closely. Children older than eight will be interviewed using the story book on night and day to determine if it will successfully reveal any traditional stories they know, and this data will be analysed to see if the stories influence their scientific understandings of night and day. Overall the study aimed to develop a research design and instruments that would readily tap into young Aboriginal children's scientific understandings in a relevant and cross-culturally sensitive way. The richness of the data collected would indicate that this aim has been met. The next step will be to determine the significance of the data collected and whether data should be collected from a larger sample of young Aboriginal children in each of the community contexts described by the NAEC (1985): Traditional, Rural, Urban Dispersed and Urban.

REFERENCES

National Aboriginal Education Committee (1985). *Philosophy, aims and policy, Guidelines for Aboriginal and Torres Strait Islander education*, Canberra, ACT: AGPS.

AUTHORS

DR MARILYN FLEER, JANE SUKROO and TRACEY FAUCETT, Faculty of Education, University of Canberra, Belconnen ACT 2616. *Specializations:* early childhood science education.
IMPLEMENTATION OF SCIENCE AND TECHNOLOGY K-6 IN RIVERINA SCHOOLS

Rod Francis
Charles Sturt University

RESEARCH NOTE

The NSW Science and Technology syllabus was released for implementation in primary schools in 1991. The combination of science and technology in one syllabus created a very different key learning area, in a part of the curriculum which many reports have shown teachers already lack confidence in both content and teaching approaches. Within the Riverina region of NSW, the author, together with the regional science consultant, developed a five module training package (completed by every school) and a range of courses available throughout the region as a total implementation plan. Key aspects of the plan included:

* courses of an extended time as 2 or 3 phased programs to allow for input-action-sharing-reflections sequences. This provided all teachers in the region with a minimum of 10 hrs and up to 18 hrs of formal professional development
* courses having significant hands-on components and dealing with the materials in a modelling way
* a system of facilitators to deliver the training package, which created a group of contact people for teachers and a network of people for the consultant to work through
* programs were usually run in a school setting by teachers or a consultant
* identifying both content and methodology as key areas for development
* support by a consultant for three years
* some accreditation into a University subject

This approach was used because most studies have shown that extended periods of reflection and sharing of ideas is most likely to have an effect on implementing a new syllabus. The program with all its facets operated during the period 1991-93. In 1993 the regional office employed the author to evaluate the implementation of the syllabus by teachers. This was done through the use of a survey sent to 30 schools in the region and asking for three teachers, over the range K-6, to fill out the survey.

RESULTS

The survey provided, amongst other things, the percentage of teachers who indicated they had a fair amount or a lot of confidence in the six content strands of the syllabus and the three key processes. These results are shown below. The figures in parentheses are from a similar study by Skamp (1991) of teachers in the NSW North Coast region.

<table>
<thead>
<tr>
<th>Syllabus Components</th>
<th>% Confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information & Communication</td>
<td>63 (55)</td>
</tr>
<tr>
<td>Built Environment</td>
<td>62 (52)</td>
</tr>
<tr>
<td>Living Things</td>
<td>90 (87.5)</td>
</tr>
<tr>
<td>Products & Services</td>
<td>57 (49)</td>
</tr>
<tr>
<td>Natural Phenomena</td>
<td>82 (62.5)</td>
</tr>
<tr>
<td>Earth & Surroundings</td>
<td>88 (85)</td>
</tr>
<tr>
<td>Investigating Process</td>
<td>55 (70)</td>
</tr>
<tr>
<td>Design & Make Process</td>
<td>47 (42.5)</td>
</tr>
<tr>
<td>Using Technology Process</td>
<td>34 (45)</td>
</tr>
</tbody>
</table>

In comparison with data collected from teachers in other regions in NSW at the time the syllabus was released (Skamp, 1991; Ferry, Harper & Wilson, 1993), Riverina teachers had showed a significant shift in their content confidence. Confidence in using the processes,
particularly those associated with technology, failed to show any gains. Other results from the survey found the following:

* teachers found the new syllabus document useful, clear and appropriate;
* teachers found the implementation package a useful professional development activity in terms of its content and structure;
* the Riverina implementation plan led to an increase in confidence of teachers in the content areas, all teachers surveyed were teaching from the syllabus and they were spending more time teaching it;
* there was not a significant shift in confidence about teaching the 3 key processes
* it was evident that teaching practices and management structures appropriate for teaching the philosophy of their syllabus were not being employed.

DISCUSSION

There was evidence in the evaluation that Riverina teachers had made positive shifts in what they were teaching (declarative knowledge). However, when teachers are asked to implement a new curriculum, they are expected to change how they teach (procedural knowledge). Despite considerable emphasis in this area in the professional development programs, the evidence showed that teachers had not gained significant confidence in teaching the key processes, the area of teaching related to how they teach. This supports others (Wallace & Louden, 1992) who had indicated that the fundamental problem with primary teachers and science and technology teaching is not really about content confidence, as constantly reported in the literature, but with expectations about how it is taught and the conflict this has with their existing routines and management structures. Non adoption of new practices has been shown to be a rational process (Vanclay, 1994). It is argued that the logic and message of the change is rationally processed, weighed up in terms of other imperatives (time, other curriculum areas, administration, control, self esteem) and either consciously not taken up, or interpreted and converted into a more familiar pattern.

The key implication of this evaluation is that, if we want to change how teachers teach in any future curriculum implementation programs, more account of within school and within classroom support needs to be put in place. Such support in the workplace should draw on a workplace learning model (NBEET, 1994), in addition to any system wide external support programs.

REFERENCES

AUTHOR

DR ROD FRANCIS, Senior Lecturer, Faculty of Education, Charles Sturt University, Wagga Wagga, NSW 2678. Specializations: primary and secondary science and technology.
Research in Science Education, 1994, 24, 375

ASSESSMENT IN THE SCIENCE CLASSROOM.

Allan Harvey
University of Waikato

ABSTRACT

This paper reports on research into two teachers’ views and practices about assessment at the classroom level. Emphasis was given to practical work and its assessment. Findings suggest it is unhelpful to define practical work as distinct from other activities in the science classroom. Various methods used for assessing activity within the participant teachers’ classrooms are described. The participant teachers were found to be primarily concerned about issues of ‘fairness’: task validity, reliability of assessment based on co-operative work and assessment of the affective domain. The place of teacher intuition in assessment is raised and briefly discussed. Directions for the ongoing research are foreshadowed.

AUTHOR

ALLAN HARVEY, Tutor, Centre for Science and Mathematics Education Research, University of Waikato, Hamilton, New Zealand. Specializations: science education, technology education, assessment and curriculum development.
In the 1950s and 1960s the general model of science education was based on enquiry, greatly reinforced by people like Schwab (1962). The treatment of science as enquiry was a means to clarify and illuminate scientific knowledge. This meant there was a body of knowledge to be learned and basically this could be done through enquiry, by making careful observations and generalising to form laws and theories. Dissatisfaction with this method was noted by some workers as some want fraudulent, since it painted a picture that real discoveries were being made by the school students in science (Winchester, 1989). The influence of Popper and hypothetico-deductive reasoning was an event which changed the way scientists viewed scientific method. This has also made untenable some of the central assumptions of the teaching of science as enquiry (Matthews, 1989) or as inductive based learning.

Hypothetico-deductive scientific method

The acknowledgment of the problem of induction by Hume (1939 in Chalmers, 1978) was further discussed by Popper (1968) who advocated the hypothetico-deductive method. The hypothetico-deductive model (Fig. 1) represents that for any particular series of observations that one has made, there will be usually more than one model or explanation. Thus some procedure is necessary to distinguish among various often contradictory alternative explanations. Only when the alternatives have been subjected to critical examination leading to the failure of some will the remaining ones be seen as possible valid explanations. There are, almost invariably, competing explanations that could explain the observation (Chamberlain, 1890/1965). The falsificationist procedure is advocated to distinguish among them to eliminate the model which is false. The procedure advocated is to use each explanation as a starting basis for the construction of an hypothesis or prediction. Having arrived at the hypothesis it is necessary to subject it to a test. Because of the ease of disproving something, instead of testing the hypothesis an alternative null hypothesis is created. Rejection of the null hypothesis gives support to the original explanation.

Fig. 1 Hypothetico-deductive method (Underwood, 1991)
Alternatively, support of the null hypothesis leads to the rejection of the explanation (Underwood, 1991). In the hypothetico-deductive model it does not follow that the model which has not yet been rejected is the correct model, only that it is still one of the possible valid models. It does however mean that an explanation can be tested and refined to become more complex. The end-point the scientist reaches using a hypothetico-deductive method is a supported explanation which describes a pattern; this explanation or model is the 'survivor', the result of rigorous testing and the best conceptions the scientist has, but this 'best conception' will be a 'misconception' in time. Students who arrive at the presently held scientists view do not have a misconception, as defined in the scientific education literature. Those students who do not arrive at the scientists view have a misconception. One part of the process of science is that science knowledge is dynamic (always a misconception). Failure to characterise scientific knowledge as tentative is an inaccuracy in science teachers and science educators work (Gallagher, 1991). One part of the process of science is that science knowledge is dynamic (always a misconception). Science educators need to portray science as temporary, but supported knowledge.

What is science at school?

Studies of classroom practice in the United States have presented science as revealed truth with emphasis placed on the body of knowledge, but with little presentation of how science is formulated or validated (Gallagher, 1991). My observations are that the language and terminology (e.g. verify, conclude, prove etc.) used in "practicals" largely reflects the inductive view of science. Students are rarely asked to reject a null hypothesis to give support to a hypothesis and thus an explanation. One explanation of this is that teachers view science as inductive. My research is on the testing of this explanation in New South Wales secondary schools.

REFERENCES

AUTHOR

DR PAULINE ROSS, Lecturer, School of Education, Macquarie University, North Ryde, NSW 2109. Specializations: experimental ecology, environmental education, philosophy of science.
THE EFFECT OF INTERVENTION STRATEGIES ON CREATIVE THINKING
SKILLS OF PRE-SERVICE TEACHERS.

Roy Skinner, William Foulds & Judith Cousins
Edith Cowan University

RESEARCH NOTE

Creativity
Science education has not traditionally fostered creativity yet it lends itself to imaginative problem-solving and inquiry. This research note presents the results of a study where a group of pre-service teachers were exposed to creative thinking strategies within their normal science education course. Preliminary findings from this research indicate the value of these creative thinking strategies in improving self-concept, verbal fluency and originality of ideas. The development of creativity is valued as a broad educational goal yet little appears to be done in tertiary courses to specifically develop creative thought patterns in our trainee teachers. School science and technology curricula have the potential to develop and utilise creative and critical thinking. However, many would question the effectiveness of cognitive skills development in science at the moment. Williams (1972) defines creative thinking behaviours as fluency (the ability to generate many ideas), flexibility (the ability to generate different classes of ideas), elaboration (the ability to build on existing ideas) and originality (the ability to generate novel ideas). In addition, he also proposes important feeling behaviours necessary for the efficient production of creative thought as risk taking (willingness to move to unknown regions), curiosity (willingness to explore), imagination (willingness to think of what might be) and complexity (willingness to take on a challenge). These characteristic creative thinking and feeling behaviours form the basis of the many tests developed to identify and measure creativity (Wakefield, 1991). For this study three such tests were used to see if the creative thinking strategies incorporated into the course were able to increase he measured creativity of the experimental group. The three tests used were the TCT-DP drawing test (Urban & Jellen, 1966), the IOWA Creative Thinking Assessment Model (Yager, 1991), and the Creativity Inventory (Williams, 1972).

Methods and results
A cohort of first year pre-service primary teachers was pre-tested and divided into an experimental and a control group, with all six classes receiving the same basic science education course for the semester. In addition, the experimental group also received instruction in the use of selected creative thinking strategies. In the last two weeks of the semester the three tests were administered again to the cohort as a post-test. The results of the t-test comparisons between the experimental (E, N=52) and control (C, N=49) groups for the three creativity measures are shown in Table 1.

Summary and discussion
For two of the three measures of creativity used in this research it can be seen that there were statistically significant gains made by the experimental group which are inferred to be a direct result of the creativity intervention strategies employed. For the IOWA test, the large increase in the numbers of Unique Responses (110%) supports the hypothesis that intervention strategies do enhance creativity. The findings for the third measure (TCT-DP) are not consistent with those of the other two measures: the gain in scores was small and not statistically significant, while the control group displayed a large and significant gain. In order to explain the unexpectedly large increase in TCT-DP scores by the Control group one would need to know how strong the influence of the 'Lecturer' variable was compared with the 'Intervention' variable. Appropriate classroom environments are also recognised as a key factor in producing creative behaviour (Walberg, 1987). At present this comparability is largely unknown. Creativity Inventory tests given to the lecturers, themselves, indicated that the
TABLE 1
SCORES OF EXPERIMENTAL AND CONTROL GROUP ON THREE TESTS

<table>
<thead>
<tr>
<th>TEST</th>
<th>GROUP</th>
<th>PRETEST</th>
<th>S.D.</th>
<th>POSTTEST</th>
<th>S.D.</th>
<th>PROB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creativity Inventory</td>
<td>E</td>
<td>66.3</td>
<td>10.0</td>
<td>71.3</td>
<td>8.6</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>65.9</td>
<td>9.6</td>
<td>67.3</td>
<td>11.4</td>
<td>0.225</td>
</tr>
<tr>
<td>IOWA test, unique responses</td>
<td>E</td>
<td>1.00</td>
<td>1.3</td>
<td>2.10</td>
<td>2.5</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.28</td>
<td>1.8</td>
<td>1.77</td>
<td>1.9</td>
<td>0.090</td>
</tr>
<tr>
<td>TCT-DP</td>
<td>E</td>
<td>24.0</td>
<td>9.7</td>
<td>25.6</td>
<td>9.1</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>21.6</td>
<td>6.6</td>
<td>28.0</td>
<td>11.4</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The lecturer for the Experimental group had a higher creative self concept than either of the two Control group lecturers. More is required than just creativity intervention strategies to enhance creative thought - students must feel that the class environment is such that they are allowed to be unconventional or to break rules or to express different opinions to the 'correct' scientific ones (Goodlad, 1984). The Control group lecturers, whilst not providing specific thinking skills training, seem to have established within their classrooms an ethos which encourages a higher self-concept in their students, although this was not clearly evident from the Creativity Inventory scores. Anecdotal evidence supports the notion that although creative thinking strategies were utilised within the Experimental group's classroom the lecturer was not prepared to break away from the more traditional rigour of science delivery. This seems to have given students conflicting messages about their freedom of expression and their feelings towards the subject of science seemingly reflected this in the picture-drawing test. It appears that it is possible to raise the levels of creativity through the use of creative thinking strategies. However, creativity interventions, by themselves, are not sufficient to enhance all aspects of creative thought without an accompanying conducive classroom environment.

REFERENCES

AUTHORS

DR ROY SKINNER, Lecturer, Science Education, Edith Cowan University, Western Australia. Specializations: practical project work, technology education and creativity in science.

DR WILLIAM FOULDS, Senior Lecturer, Science Education, Edith Cowan University, Western Australia. Specializations: ecology, science skills and creativity in science.

MS JUDITH COUSINS, Lecturer, Science Education, Edith Cowan University, Western Australia. Specializations: primary science curriculum, technology education, early childhood education.
Research in Science Education, 1994, 24, 380-381

OBSERVATIONS FROM THE CLASSROOM: WHEN ANALOGIES GO WRONG!

David F. Tregust, Susan M. Stockmayer, Allan Harrison, Grady Venville & Rodney Thiele
Curtin University of Technology

RESEARCH NOTE

Analogies and learning

Research, as well as teacher self-reports and anecdotal evidence, indicates that analogies have much potential to enhance learning. However, the use of analogies is fraught with difficulties when due consideration is not taken concerning the essential aspects that make up an analogy. To address this issue, we have been working with a cadre of teachers in Western Australian schools who are interested in improving their analogical teaching. In doing so, we have used two models, firstly a modified Teaching-with-Analogy model derived from the work of Glynn (1991) and secondly the FAR Guide to analogy teaching (FAR being an acronym for Focus, Action and Reflection as being the features that need attention when the analogy is being taught, Tregust, 1993). With or without these models to help enhance learning with analogies, we have observed teaching episodes where analogies simply did not work. In this note, we have illustrated how these analogies do go wrong. By focussing on those features where analogical instruction breaks down, it is possible to provide further guidance to science teachers about the careful use of analogies rather than simply dismissing them as a source to enhance learning.

Research on difficulties with analogies

The teaching-learning episodes described in this note come from more than 100 lessons. The episodes involve teachers' verbal explanations and use of textbooks related to some aspect of analogy instruction taught in general science in Years 8, 9 and 10, and chemistry, physics and biology in Years 11 and 12. We report several examples of episodes that were not as successful as intended by the teacher and have categorised them under five, non-exhaustive headings. Subsequently, analogies go wrong when:

1. Students attend to observed or imaginary functional attributes of a structural analog. For example, several Australian chemistry textbooks describe an analogy of a marble on the MCG to depict the nucleus of an atom. The key aspects of the analogy relate to the sharing of structural rather than functional attributes and the concrete analog attempts to describe an abstract science concept. Several students expressed their understanding of the atom in terms of the functions of imaginary attributes - the players - of the analog which were not part of the intended analogy.

2. Students lack familiarity with the analog concept. Analogs which are familiar to students are more likely to be fruitful in terms of enhancing conceptual understanding than those which are not. In situations where a suitable analog is not familiar to the students, explaining the analog may rectify a situation where analogies may otherwise go wrong.

3. Students and teacher hold an objectivist view of the nature of science. Analogies are best used in a classroom environment which teaches science not as true facts, but as theoretical interpretations subject to falsification. In this environment analogies are more likely to be seen as metacognitive tools with which students can make sense of the phenomena under discussion rather than exact representations of scientific facts.
4. Teachers are using analogies to teach concepts outside their area of expertise. Problems in the mapping of shared attributes between the analog and science concept and in the identification for the students of unshared attributes between analog and science concept seems most likely to occur when the teacher lacks a clear conceptualisation of the concept being presented.

5. Analogies lack sufficient conceptual depth. For example, when students mapped the bridge over a valley as analogous to a catalysed chemical reaction, one student commented that she knew that a catalyst provided a path for lower [activation] energy, but still did not know how the reaction worked. Clearly, in a search for a more conceptual understanding, possibly at a molecular level, this student found the analogy lacking conceptual depth.

REFERENCES

AUTHORS

DR DAVID F. TREGUST is Associate Professor and SUSAN M. STOCKLMAYER, ALLAN HARRISON, GRADY VENVILLE and RODNEY THIELE are doctoral students, Science and Mathematics Education Centre, Curtin University of Technology, GPO Box U1987, Perth WA 6001. Specializations: teachers' pedagogical knowledge, analogical reasoning, conceptual change.
FIRST YEAR UNIVERSITY SCIENCE - REVISITED

Petrus Zeegers
Flinders University

RESEARCH NOTE

Introduction

Not all new students come to university equally well prepared. The inherent difficulties associated with the transition to tertiary study may be further exacerbated when assumptions are made by the teaching staff as to the level of preparedness of their students. This is particularly the case for those students who have gained entrance to university Science courses by means other than the traditional route. Recent work has looked at the difficulties encountered by first-year students of Arts, Science, Law and Commerce. The results of the studies found that the problems most often experienced by the students, though numerous and diverse, can be classified into six broad categories: academic preparedness, academic progress, personal, family, financial and social. The present study is concerned only with the academic issues, though the other factors may also impinge on the issues in that area.

Methods

The aim of this study was to ascertain the problems faced by new students of Science when they first enter the tertiary system. What subjects do they find the most difficult? Which do they find the least difficult? What are the major problems that new students encounter when they first enter the university? The answers to some of these questions will help to formulate the role of my position in providing academic support. The second aspect of this study was to look at what strategies can be utilised to minimise the problems and possibly overcome them. The long term goal is to minimise the high first-year Science drop out rate and to allow each student progress through their chosen course in the minimum of time.

For the present study, two groups of commencing Science students were readily identifiable and were selected as being representative of first-year university Science students at Flinders University. The two groups are differentiated by their Science backgrounds which is evident by their choice of first year Science and Mathematics subjects. These two groups are labelled Groups A and B for convenience.

Group A consists of those choosing to study Science at university without the "traditional" high school Science and Mathematics background. It contains students who have recently matriculated (58%) but have not studied Science and Mathematics subjects. It also contains those students (42%) who have entered the university through mature entry schemes, through a foundation course or by means of a special entry scheme for non-matriculants. All group A students were enrolled in at least one of the introductory Science or Mathematics subjects.

Group B contains the traditional first-year Science students, having studied Science and Mathematics to Matriculation level.

The results were largely used to determine my own approach to providing academic assistance to the students. The results were also used to set in train strategies to enable teaching staff to teach their students more effectively and to enable the students to become more effective learners.
Summary

Compared to the other two South Australian universities, Flinders University attracts a greater proportion of undergraduate students who are older, who come from a wider range of educational backgrounds, who come from a lower socio-economic background and who may be less academically prepared to handle the tasks demanded of them. In the area of the Sciences these students are distinguishable from the more traditional first-year Science students though the problems they face have a degree of similarity. This cohort of students is generally attracted to the study of the Biological Sciences and have to some extent tended to avoid the study of subjects with a mathematical component. All commencing Science students however have difficulties adjusting to the new world of tertiary study. Some adapt readily but many do not. This is evident by the high failure rate and the withdrawal rate of many first year subjects. The high attrition rate of Science students is also evident in the low graduation rate figures derived from statistics kept by the university. This latter evidence suggests that less than half the students in the Sciences attain their degree in four years (1990 statistics). Much of this stems from problems encountered in the first years of a degree program.

Six key areas of difficulty are faced by commencing students at tertiary institutions in South Australia. Of these the two most directly related to this study are the issues of academic preparedness and academic progress.

This study has focussed only on the student centred problems and has not tackled the more vexed problem of tertiary teaching. As such it has concentrated on providing the students with some of the academic skills required to be successful tertiary students.

As a result of this study, and subsequent follow up work, the following list of strategies have been implemented by the author or are proposals for future implementation:

* a comprehensive academic orientation program for all commencing Science students which specifically addresses some of the concerns of students;
* a comprehensive handbook for commencing students outlining the essential skills necessary for a student to successfully study Science at a tertiary level;
* peer group study for students with difficulty in specific subjects or areas;
* close liaison between faculty teaching staff and academic advisers;
* targeting ‘at risk’ students or students with special needs as identified by teaching staff;
* a continual program of academic skills seminars taught within the mainstream discipline subjects as the need arises;
* close liaison between the secondary schools and the tertiary sector;
* bridging courses to bring students up to the required level, particularly in the area of mathematics.

AUTHOR

DR. PETRUS ZEEGERS, Academic Adviser (Science), Language and Learning Unit, Flinders University, PO Box 2100, Adelaide, SA 5001. Specializations: transition to tertiary study, scientific literacy, chemical education.
SUPPLEMENT

THE BOOK OF GENESIS AND THE CHRONICLES OF THE PEOPLE OF ASERA*

Dearly beloved, we are gathered together in the sight of the Great Vice-Chancellor and all this company to celebrate this holy festival, for as it said in the Book of Genesis and Chronicles of the People of Asera, Ye shall assemble the people of Asera, even all the tribes, from the tribe of Curtin in the west to the tribe of Waikato in the east, and ye shall have a holy convocation, and ye shall eat, drink and be merry, and read the words of this book, all the days of your life.

Let us pray.

In the beginning, the Great Vice-Chancellor created the heaven and the earth. And the earth was void and without form, and darkness reigned upon the face of the deep. And so the Great Vice-Chancellor created greater lights called universities to rule by day, and lesser lights called CAEs to rule by night. And the Great One saw that it was good.

But the lands were empty and devoid of life. And so he created tutors and research assistants and Ph.D. students and other endangered species. There were northfields, and trees with appletons, and evolution occurred with missing linkes. And the Great One saw that it was very good.

But it was not good for these forms of life to dwell alone. And so the Great One took a rib from a tutor, a backbone from a research assistant, and a brain from a Ph.D. student, and created the first academic, whose name was Methusaleh. And Methusaleh lived for nine hundred and sixty nine years, and published nothing, and his tenure was revoked and he was given early retirement.

And the Great One caused a flood of knowledge to wash over the earth, and so he created an A.R.C., or ark, to protect his creatures.

And the Great One created linguistic confusion on the earth, a veritable tower of psychobabel. He caused the Romans to write from left to right, the Hebrews from right to left, the Chinese from top to bottom, and Peter Fensham all over the place.

[* Editor's note: This sermon was given at the annual dinner in Hobart by a theologically confused gentleman wearing a bishop's mitre, a cardinal's cloak and a rabbinical beard. He insisted that it be "circulated in the Chronicles to all the tribes of ASERA". I promptly rejected it as a paper, pointing out to him that it added absolutely nothing to the field of science education research, that it had not been reviewed, that his literature review was very skimpy, and that no references in APA format had been included. He threatened me with divine wrath. I then proposed to publish it, using his own language, "looseth leaffeth", but he refused to agree to this, citing the first Almighty Editor's precedent, which he considered quite unsatisfactory. We finally settled on this supplement, and he went off, muttering assorted fragments of Gregorian chants, the Hallelujah Chorus, psalms and Talmudic texts, not happy, but at least fairly calm. I never saw him again. P.L.G.]
But this Peter was a wise and gentle man, who knew both the science of chemical bonding and the art of human bonding. And the Great One said unto him, Go, remove thyself from the dungeons of Melbourne to the rockpile of Monash. For thou art Peter, and upon this rockpile I will build a great temple of science education, and the people of Asera will worship therein, and will be fruitful and multiply. And they will write many papers, and use up many trees, even all the cedars of Lebanon, yea, even all the trees of the Sahara Forest.

But know too that when thou leavest thy house, and goest abroad, thou shalt not walk upon water, but shall fly with wings, for as it is said, He who walketh upon water collecteth no frequent flyer points.

And the apostle Peter smiled upon his servant Lindsay the son of Mackay, and said unto him, Go thou and collect together the names of the children of Asera. And the Great Vice-Chancellor built a holy temple with a great machine, and Lindsay bowed in awe before it, and punched holy cards, and he sent his maidservants to carry the cards to the Temple, whereupon the machine growled and chewed up the cards and printed out the names of the children of Asera. And this list existeth to this day. And Peter called a meeting, saying, Come, let us reason together, so that the tribes of Monash and Macquarie and Queensland and Tasmania can unite together into a single nation, great, mighty and populous.

And the people came from far and wide, from the four corners of the earth, and had an annual holy convocation. And so began many years of wanderings of the people of Asera, from the centrally located, marvellously cosmopolitan city of Melbourne, that Garden of Eden, with its perfect climate, outstanding restaurants and sophisticated population, to all the other less endowed corners of the land. They wandered to the city of sin, where David, the Cohen, the High Priest of Macquarie dwelled. They wandered further north, to the Land of Cane, where there were cane-loads. They wandered to the mid-west, to a land where the Labor Party swallowed uppers when they were down, and the Liberal Party swallowed Downers to get up. They wandered further west, to a land of unamalgamated universities and amalgamated un-universities. They wandered to the islands of kiwi-fruit and sheep to the east, where the people ate fush and chups, sex times a week. And they even wandered to the island of Sodom and Gomorrah in the south. And the Great Vice-Chancellor commanded the people, saying, in the seventh month, in the second week of the month, assemble the people of Asera, for it shall be unto you a wholly satisfying convocation.

And there arose among the tribe of Queensland a prophet, a wise man, Richard the son of Tisher, who had a dream, and prophesied that the people of Asera would one day prepare annual Chronicles. For he said, what shall it profit a man that he speaketh, and his words are recorded not? What gain shall there be for a woman who writeth, yet scoreth no points in the Great Vice-Chancellor’s Quality Assurance Program? And he said, Publish it not in Gath nor in Ashkelon, but in Brisbane, and he offered himself before the people as their humble servant.

And the people of Asera listened to Tisher, and acclaimed him, and danced around him with great joy and wonderment, and proclaimed him Editor of the Chronicles. For as it is said, he who openeth up his mouth to volunteer soon wisheth that he had kept it shut. And yet the people of Asera were unsatisfied, for they cried out to him, Almighty Editor, write down your words of wisdom and we will sing them as a song of exultation, all the days of our life. And so Richard the son of Tisher sat for forty days and forty nights in his tent in the desert of St Lucia, neither eating, nor drinking nor playing golf, and thought about the trends in science education, and wrote down the words of the first Chronicles.
And the prophet came out of the desert, and gave the Chronicles to the people of Asera. And yet the people were unsatisfied and demanded more. And Richard the son of Tisheer wrote an Editorial Preface, and prophesied that a day would come when there would be an annual journal of Asera. And he sent out the Chronicles, but forgotth to print the Editorial, and includeth it afterwards, looseth leafeth.

And Richard sighed and groaned under the labour. And the Great One heard his cries, and sent him to the southland to profess his faith. And Richard relieved himself, of his work as Chronicler.

Now there arose in the tribe of Monash another Richard, servant to the apostle Peter, whose star waxed in the firmament of heaven, for he rose from administrative assistant to the apostle, to Ph.D. student to lecturer to senior lecturer to associate professor to professor to Dean, displaying a hierarchy of learning. He was a tall man, and the height thereof was two cubits, and the Great One spoke unto him saying, Many servants of mine have done worthily, but verily thou art the longest Dick of them all.

And it came to pass that a new Pharaoh arose, a higher Power, a Colin of the tribe of Flinders, who became Almighty Editor of the Chronicles. And Pharaoh Colin had a terrible dream, and he dreamt of figures dancing and falling over, and none in his kingdom could decipher it, save only his butler who could interpret his dream. And the butler said unto Pharaoh, the figures are the income and expenditures of the Chronicles, and their falling over is due to their inability to balance. And so the Pharaoh made Jim Butler his business manager. And Pharaoh had another dream, of chateaux and Eiffel towers and can-can girls. And he followed his dream, and left the tribe of Flinders for Paris, from the insane to the Seine, and the children of Asera knew him no more.

And there arose in the tribe of Monash a young Fraser, for he was indeed adept at phrasing, for he knew the art of saying the same words in different ways, each counting as a separate publication. And he wrote a paper for the Chronicles on The Impact of ASEP on Pupil Learning and Classroom Climate. And one of his memorable phrases was:

The equation may be expanded to yield seven sets of predictors of learning:

\[L_n = f_1(l_1) + f_2(A_1) + f_3(E_1) + l_4(A_1) + f_5(E_1) + f_6(A_1E_1) + f_7(A_1E_1) \]

To which another Fraser of the time responded, Life wasn't meant to be easy.

And the tribe of Monash honoured the young Fraser with a hooded garment of finely woven scarlet silk, and praised him mightily, and sent him westwards as quickly as possible.

And it came to pass in the island to the east that a prophetess arose, Beverley from the tribe of Waikato, whose voice was like a bell, yet she wrote with a LISP. And she divined children's thoughts and constructed their meanings, and came into conflict with St. Matthews from the land of the Aucks who deconstructed constructivism and said it maintained an Aristotelian-empiricist paradigm, and called for much epistemological imbibing of new philosophical wine, and other lewdness. Whereupon the prophetess Beverley stood forth at the annual holy convocation and delivered a well-directed stream of feminist empiricist post-modernism. And St. Matthews retreated to the land from whence he came, and his gospel was heard no more in the land of the Aucks.

And now there arose a new Editor in the land, the apostle Paul. And he climbed the holy mountain to commune with the Great One, and came down from the mountain bearing two tablets of stone, size A4, 90 characters per line, 50 lines per tablet. And the people were hushed, and they prostrated themselves as they heard these words:
I am the Almighty Editor, who brought thee out of the land of electric typewriters into the land of laser printing.

Thou shalt not make any graven images using dot-matrix printers and worn-out old printer ribbons.

Honour the length requirements of thy Chronicles, for the Almighty Editor is a ruthless Editor, and in remembrance of the covenant with our father Abraham will circumcise thy work if it groweth too long.

Remember the day of Judgement, one month after the conference, for the Almighty Editor is a stroppy editor, and will not hold thee guiltless when thou submittest thy work late.

Thou shalt not murder the English language.

Thou shalt not steal the ideas of others, without proper referencing.

Thou shalt not adulterate thy text with split infinitives, misplaced apostrophes, misuse the word ‘methodology’, or use ‘trial’ as a verb when ‘try out’ is meant, nor do anything which will offend thy Editor.

And it came to pass that one day a shepherd was tending his flocks by the Dead Sea, which is Port Phillip Bay, and he encountered a cave, and it contained a dusty parchment containing many words in an ancient tongue. And he took the parchment to the elders of his tribe, who deciphered the words, and Lo! they were the lost words of Richard the son of Tisher, in the first Chronicles. And the elders took the words to the people at their holy convocation, and the people rejoiced, and sang a great song of exultation, and their hearts were satisfied at last, and they bowed down and praised the Great One and all the apostles, prophetesses, saints and almighty editors.

The objectives of this paper are to refer to some trends in science education and to suggest several implications for research. Amen. An attempt will be made to specify a number of research questions, and to indicate the types, or styles, of research which may be used to answer the questions. Hallelujah. In addition, it is proposed to raise four important issues which are of concern to all science education researchers. Amen. It will not be possible, in the time available, to describe in detail some research designs. Hallelujah. However, it may be possible for groups to meet to discuss the designs of future projects. This issue will be raised again later.

Tisher (1971).

[Editor’s Note: At this point, the clerical gentleman made his exit, to the sounds of heavenly voices singing ‘Amen’.]